Purpose of a case: use of silymarin / silibinin as a molecular analogue of remdesivir for the treatment of patients diagnosed of COVID-19 with acute mild or moderate respiratory difficulty syndrome. Case report.

Authors

  • Mauro Antonio Falconi García Centro de Atención ambulatorio El Batán IESS, Quito, Ecuador,
  • Juan Esteban Guevara Betancur Centro de Atención ambulatorio El Batán IESS, Quito, Ecuador,

DOI:

https://doi.org/10.54495/Rev.Cientifica.v30i2.286

Keywords:

SARS-COV2, COVID 19, Optional treatment

Abstract

The respiratory disease caused by SARS-CoV2 is an infectious-contagious viral disease that affects our population, especially older adults and young adults throughout the world. One of the main causes of this pathology is the limited immunization capacity at a global level, especially in developing countries, to combat outbreaks of this disease. It develops in phases of very characteristic respiratory symptoms which can guide an early diagnosis, otherwise it may require hospitalization for treatment; At a global and local level, different therapies have been tried without complete success. Presumptive diagnosis is clinical and confirmatory through nasopharyngeal swabs, which isolate beta virus, SARS-CoV-2 coronavirus, a name issued by the World Health Organization, who declared the pandemic for this disease in particular. A case of a patient with the disease caused by the virus in question is presented who comes to our health home, for not accessing a more complex hospital unit, due to hospital saturation, with a mild to moderate respiratory syndrome, in view of the impossibility of accessing other treatments, we started the administration of silymarin/silibinin in daily doses twice a day. In order for the treatment tested with different molecules to have a common denominator, which is based on attacking the cascade of inflammatory cytokines derived from the activation of the STAT3 receptor and the modulation of type 1 IFG; with corticotherapy mainly dexamethasone, or methylprednisolone, and molecules such as Remdesivir, Sofosbuvir and Ribavirin, which continue to be the focus of discussion, so optional treatments are being evaluated to combat the effects of this disease. The incidence of this disease is global, being higher in underdeveloped countries which do not have an appropriate immunization program.

Downloads

Download data is not yet available.

References

Abenavoli, L., Izzo, A. A., Milić, N., Cicala, C., Santini, A., & Capasso, R. (2018). Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytotherapy Research, 32(11), 2202-2213.

https://doi.org/10.1002/ptr.6171 DOI: https://doi.org/10.1002/ptr.6171

Agarwal, C., Tyagi, A., Kaur, M., & Agarwal, R. (2007). Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis, 28(7), 1463-1470.

https://doi.org/10.1093/carcin/bgm042 DOI: https://doi.org/10.1093/carcin/bgm042

Ahn, D. G., Choi, J. K., Taylor, D. R., & Oh, J. W. (2012). Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Archives of Virology, 157(11), 2095-2104.

https://doi.org/10.1007/s00705-012-1404-x DOI: https://doi.org/10.1007/s00705-012-1404-x

Bijak, M. (2017). Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.) Chemistry, bioavailability, and metabolism. Molecules, 22(11), 1942.

https://doi.org/10.3390/molecules22111942 DOI: https://doi.org/10.3390/molecules22111942

Bosch-Barrera, J., Queralt, B., & Menendez, J. A. (2017). Targeting STAT3 with silibinin to improve cancer therapeutics. Cancer Treatment Reviews, 58, 61-69.

https://doi.org/10.1016/j.ctrv.2017.06.003 DOI: https://doi.org/10.1016/j.ctrv.2017.06.003

Carnesecchi, S., Dunand-Sauthier, I., Zanetti, F., Singovski, G., Deffert, C., Donati, Y., Cagarelli T, Pache JC, Krause KH, Reith W, & Barazzone-Argiroffo, C. (2014). NOX1 is responsible for cell death through STAT3 activation in hyperoxia and is associated with the pathogenesis of acute respiratory distress syndrome. International Journal of Clinical and Experimental Pathology, 7(2), 537-551.

Channappanavar, R., Fehr, A. R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D. K., & Perlman, S. (2016). Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host & Microbe, 19(2), 181-193.

https://doi.org/10.1016/j.chom.2016.01.007 DOI: https://doi.org/10.1016/j.chom.2016.01.007

Chen, G., Wu, D. I., Guo, W., Cao, Y., Huang, D., Wang, H., Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J., & Ning, Q. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. The Journal of Clinical Investigation, 130(5), 2620-2629.

https://doi.org/10.1172/JCI137244 DOI: https://doi.org/10.1172/JCI137244

Favalli, E. G., Biggioggero, M., Maioli, G., & Caporali, R. (2020). Baricitinib for COVID-19: a suitable treatment?. The Lancet Infectious Diseases, 20(9), 1012-1013.

https://doi.org/10.1016/S1473-3099(20)30262-0 DOI: https://doi.org/10.1016/S1473-3099(20)30262-0

Fleming, S. B. (2016). Viral inhibition of the IFN-induced JAK/STAT signalling pathway: development of live attenuated vaccines by mutation of viral-encoded IFN-antagonists. Vaccines, 4(3), 23.

https://doi.org/10.3390/vaccines4030023 DOI: https://doi.org/10.3390/vaccines4030023

Gao, H., & Ward, P. A. (2007). STAT3 and suppressor of cytokine signaling 3: potential targets in lung inflammatory responses. Expert Opinion on Therapeutic Targets, 11(7), 869-880.

https://doi.org/10.1517/14728222.11.7.869 DOI: https://doi.org/10.1517/14728222.11.7.869

Gao, Y., Li, T., Han, M., Li, X., Wu, D., Xu, Y., Zhu Y, Liu Y, Wang X., & Wang, L. (2020). Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID‐19. Journal of Medical Virology, 92(7), 791-796.

https://doi.org/10.1002/jmv.25770 DOI: https://doi.org/10.1002/jmv.25770

Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q, Lou Z., & Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 368(6492), 779-782.

https://doi.org/10.1126/science.abb7498 DOI: https://doi.org/10.1126/science.abb7498

Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A., Feldt, T., Green, G., Green, L., Lescure, F. X., Nicastri, E., Oda, R., Yo, K., Quiros-Roldan, E., Studemeister, A., Redinski, J., Ahmed, S., Bernett, J., Daniel Chelliah, D., Chen, D., ... & Flanigan, T. (2020). Compassionate use of remdesivir for patients with severe Covid-19. New England Journal of Medicine, 382(24), 2327-2336.

https://doi.org/10.1056/NEJMoa2007016 DOI: https://doi.org/10.1056/NEJMoa2007016

Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., Liu, L., Shan, H., Lei, C. L., Hui, D.S., Du, B., Li, L. J., Zeng, G., Yuen, K.Y., Chen, R.C., Tang, C. L., Wang, T., Chen, P. Y., Xiang, J., Li, S. Y., ... & Zhong, N. S. (2019). China medical treatment expert group for Covid-19. Clinical Characteristics of Coronavirus Disease, 382(18), 1708-1720.

https://doi.org/10.1056/NEJMoa2002032 DOI: https://doi.org/10.1056/NEJMoa2002032

Hackett, E. S., Twedt, D. C., & Gustafson, D. L. (2013). Milk thistle and its derivative compounds: a review of opportunities for treatment of liver disease. Journal of Veterinary Internal Medicine, 27(1), 10-16.

https://doi.org/10.1111/jvim.12002 DOI: https://doi.org/10.1111/jvim.12002

Kim, N. C., Graf, T. N., Sparacino, C. M., Wani, M. C., & Wall, M. E. (2003). Complete isolation and characterization of silybins and isosilybins from milk thistle (Silybum marianum). Organic & Biomolecular Chemistry, 1(10), 1,684-1,689.

https://doi.org/10.1039/b300099k DOI: https://doi.org/10.1039/b300099k

Kindler, E., & Thiel, V. (2016). SARS-CoV and IFN: too little, too late. Cell Host & Microbe, 19(2), 139-141.

https://doi.org/10.1016/j.chom.2016.01.012 DOI: https://doi.org/10.1016/j.chom.2016.01.012

Kirchdoerfer, R. N., & Ward, A. B. (2019). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature Communications, 10(1), 1-9.

https://doi.org/10.1038/s41467-019-10280-3 DOI: https://doi.org/10.1038/s41467-019-10280-3

Li, S. W., Wang, C. Y., Jou, Y. J., Yang, T. C., Huang, S. H., Wan, L., Lin, Y. J., & Lin, C. W. (2016). SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway. Scientific Reports, 6(1), 1-13.

https://doi.org/10.1038/srep25754 DOI: https://doi.org/10.1038/srep25754

Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., Chen, L., Li, J., Wang, X., Wang, F., Liu, L., Zhang, S., & Zhang, Z. (2020). Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 . Nature Medicine, 26(6),842-844.

https://doi.org/10.1038/s41591-020-0901-9 DOI: https://doi.org/10.1038/s41591-020-0901-9

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou W., Zhao, L., Chen, J., ... & Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565-574.

https://doi.org/10.1016/S0140-6736(20)30251-8 DOI: https://doi.org/10.1016/S0140-6736(20)30251-8

Pedersen, S. F., & Ho, Y. C. (2020). SARS-CoV-2: a storm is raging. The Journal of Clinical Investigation, 130(5), 2202-2205.

https://doi.org/10.1172/JCI137647 DOI: https://doi.org/10.1172/JCI137647

Pérez-Sánchez, A., Cuyàs, E., Ruiz-Torres, V., Agulló-Chazarra, L., Verdura, S., González-Álvarez, I., Bermejo, M., Joven, J., Micol, V., Bosch-Barrera, J., & Menendez, J. A. (2019). Intestinal permeability study of clinically relevant formulations of silibinin in Caco-2 cell monolayers. International Journal of Molecular Sciences, 20(7), 1606.

https://doi.org/10.3390/ijms20071606 DOI: https://doi.org/10.3390/ijms20071606

Praveen, D., Puvvada, R. C., & Aanandhi, V. (2020). Janus kinase inhibitor baricitinib is not an ideal option for management of COVID-19. International Journal of Antimicrobial Agents, 55(5), 105967.

https://doi.org/10.1016/j.ijantimicag.2020.105967 DOI: https://doi.org/10.1016/j.ijantimicag.2020.105967

Priego, N., Zhu, L., Monteiro, C., Mulders, M., Wasilewski, D., Bindeman, W., Doglio L, Martínez L, Martínez-Saez E, Ramón y Cajal S, Megías D, Hernández-Encinas E, Blanco-Aparicio C, Martínez L, Zarzuela E, Muñoz J, Fustero-Torre C, Piñeiro-Yáñez E, Hernández-Laín A, Bertero L, ... & Valiente, M. (2018). STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nature Medicine, 24(7), 1024-1035.

https://doi.org/10.1038/s41591-018-0044-4 DOI: https://doi.org/10.1038/s41591-018-0044-4

Rho, J. K., Choi, Y. J., Jeon, B. S., Choi, S. J., Cheon, G. J., Woo, S. K., Kim H.R., Kim C.H., Choi C.M., & Lee, J. C. (2010). Combined treatment with silibinin and epidermal growth factor receptor tyrosine kinase inhibitors overcomes drug resistance caused by T790M mutation. Molecular Cancer Therapeutics, 9(12), 3233-3243.

https://doi.org/10.1158/1535-7163.MCT-10-0625 DOI: https://doi.org/10.1158/1535-7163.MCT-10-0625

Son, Y., Lee, H. J., Rho, J. K., Chung, S. Y., Lee, C. G., Yang, K., Kim, S. H., Lee, M., Shin, I. S., & Kim, J. S. (2015). The ameliorative effect of silibinin against radiation-induced lung injury: protection of normal tissue without decreasing therapeutic efficacy in lung cancer. BMC Pulmonary Medicine, 15(1), 1-10.

https://doi.org/10.1186/s12890-015-0055-6 DOI: https://doi.org/10.1186/s12890-015-0055-6

Tian, L., Li, W., & Wang, T. (2017). Therapeutic effects of silibinin on LPS-induced acute lung injury by inhibiting NLRP3 and NF-κB signaling pathways. Microbial Pathogenesis, 108, 104-108.

https://doi.org/10.1016/j.micpath.2017.05.011 DOI: https://doi.org/10.1016/j.micpath.2017.05.011

Tyagi, A., Singh, R. P., Ramasamy, K., Raina, K., Redente, E. F., Dwyer-Nield, L. D., Radcliffe, R. A., Malkinson, A. M., & Agarwal, R. (2009). Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-κB and signal transducers and activators of transcription 3. Cancer Prevention Research, 2(1), 74-83.

https://doi.org/10.1158/1940-6207.CAPR-08-0095 DOI: https://doi.org/10.1158/1940-6207.CAPR-08-0095

Verdura, S., Cuyàs, E., Llorach-Parés, L., Pérez-Sánchez, A., Micol, V., Nonell-Canals, A., Joven, J., Valiente, M., Sánchez-Martínez, M., Bosch-Barrera, J., & Menendez, J. A. (2018). Silibinin is a direct inhibitor of STAT3. Food and Chemical Toxicology, 116, 161-172.

https://doi.org/10.1016/j.fct.2018.04.028 DOI: https://doi.org/10.1016/j.fct.2018.04.028

World Health Organization. (28 de abril de 2019). Coronavirus Disease (COVID-19) Outbreak. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766-788.

https://doi.org/10.1016/j.apsb.2020.02.008 DOI: https://doi.org/10.1016/j.apsb.2020.02.008

Zhang, B., Wang, B., Cao, S., Wang, Y., & Wu, D. (2017). Silybin attenuates LPS-induced lung injury in mice by inhibiting NF-κB signaling and NLRP3 activation. International Journal of Molecular Medicine, 39(5), 1111-1118.

https://doi.org/10.3892/ijmm.2017.2935 DOI: https://doi.org/10.3892/ijmm.2017.2935

Zhang, C., Wu, Z., Li, J. W., Zhao, H., & Wang, G. Q. (2020). Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. International Journal of Antimicrobial Agents, 55(5), 105954.

https://doi.org/10.1016/j.ijantimicag.2020.105954 DOI: https://doi.org/10.1016/j.ijantimicag.2020.105954

Zhang, D., Guo, R., Lei, L., Liu, H., Wang, Y., Wang, Y., Qian, H., Dai, T., Zhang, T., Lai, Y., Wang, J., Liu, Z., Chen, T., He, A., O'Dwyer, M., & Hu, J. (2020). COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome. Journal of Leukocyte Biology, 109, 13-22.

https://doi.org/10.1002/JLB.4HI0720-470R DOI: https://doi.org/10.1002/JLB.4HI0720-470R

Zhang, J., Luo, Y., Wang, X., Zhu, J., Li, Q., Feng, J., He, D., Zhong, Z., Zheng, X., Lu, J., Zou, D., & Luo, J. (2019). Global transcriptional regulation of STAT3-and MYC-mediated sepsis-induced ARDS. Therapeutic Advances in Respiratory Disease, 13, 1753466619879840.

https://doi.org/10.1177/1753466619879840 DOI: https://doi.org/10.1177/1753466619879840

Zheng, R., Ma, J., Wang, D., Dong, W., Wang, S., Liu, T., Xie, R., Liu, L., Wang, B., & Cao, H. (2018). Chemopreventive effects of silibinin on colitis-associated tumorigenesis by inhibiting IL-6/STAT3 signaling pathway. Mediators of Inflammation, 2018.

https://doi.org/10.1155/2018/1562010 DOI: https://doi.org/10.1155/2018/1562010

Ziegler, C. G., Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C. N., Cao, y., Yousif, A. S., Blake, J.B., Hauser, M., Feldman, J., Muus, C., Wadsworthll, M. H., Kaser, S. W., Hughes, T. K., Doran, B., Gatter, G. J., Vukovic, M., Taliaferro, F., Mead, B. E., ... & Zhang, K. (2020). SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 181(5), 1016-1035. DOI: https://doi.org/10.2139/ssrn.3555145

https://doi.org/10.1016/j.cell.2020.04.035 DOI: https://doi.org/10.1016/j.cell.2020.04.035

Published

2022-08-26

How to Cite

Falconi García, M. A. ., & Guevara Betancur, J. E. . (2022). Purpose of a case: use of silymarin / silibinin as a molecular analogue of remdesivir for the treatment of patients diagnosed of COVID-19 with acute mild or moderate respiratory difficulty syndrome. Case report. Revista Científica, 30(2), 50–59. https://doi.org/10.54495/Rev.Cientifica.v30i2.286

Issue

Section

Case Reports

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.