Modeling the dynamics of an AFM Atomic Force Microscopy cantilever
DOI:
https://doi.org/10.54495/Rev.Cientifica.v23i1.114Keywords:
Simulation, dynamics, cantilever, AFMAbstract
Currently some research involves computing, as well as experiment. On the other hand, computer simulation can provide valuable approaches to scientific problems. The atomic force microscopy (AFM) is one of the scanning probe microscopy techniques, which locally scans interatomic forces between a sample and a probe. The oscillatory motion of the cantilever can be simulated mathematically using a forced damped harmonic oscillator model. The fact that it is possible to mathematically approach the behaviour of the cantilever-sample system, allows them to be programmed and computed to predict the physical behavior at a theoretical level.
Downloads
References
Barcons, V., Verdaguer, A., Font, J., Chiesa, M., & Santos, S. (2012). Nanoscale Capillary Interactions in Dynamic Atomic Force Microscopy. The Journal of Physical Chemistry C, 116(14), 7757-7766. https://doi.org/10.1021/jp2107395 DOI: https://doi.org/10.1021/jp2107395
Binning, G. (1988). Atomic force microscope and method for imaging surfaces with atomic resolution.
Eslami, S., & Jalili, N. (2012). A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip - sample interaction forces. Ultramicroscopy, 117, 31-45. https://doi.org/10.1016/j.ultramic.2012.03.016 DOI: https://doi.org/10.1016/j.ultramic.2012.03.016
Eves, B. J., & Green, R. G. (2012). Limitations on accurate shape determination using amplitude modulation atomic force microscopy. Ultramicroscopy, 115, 14-20. https://doi.org/10.1016/j.ultramic.2012.01.016 DOI: https://doi.org/10.1016/j.ultramic.2012.01.016
García, R., & Perez, R. (2002). Dynamic atomic force microscopy methods. Surface Science Reports, 47. https://doi.org/10.1016/S0167-5729(02)00077-8 DOI: https://doi.org/10.1016/S0167-5729(02)00077-8
Gómez, C. J., & Garcia, R. (2010). Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM. Ultramicroscopy, 110 (6) , 626 - 633 . https://doi.org/10.1016/j.ultramic.2010.02.023 DOI: https://doi.org/10.1016/j.ultramic.2010.02.023
Gotsmann, B., & Fuchs, H. (2002). Dynamic AFM using the FM technique with constant excitation amplitude. Applied Surface Science, 188(3-4), 355-362. https://doi.org/10.1016/S0169-4332(01)00950-3 DOI: https://doi.org/10.1016/S0169-4332(01)00950-3
Hölscher, H., & Schwarz, U. D. (2007). Theory of amplitude modulation atomic force microscopy with and without Q-Control. International Journal of Non-Linear Mechanics, 42(4), 608-625. https://doi.org/10.1016/j.ijnonlinmec.2007.01.018 DOI: https://doi.org/10.1016/j.ijnonlinmec.2007.01.018
Kahrobaiyan, M. H., Ahmadian, M. T., Haghighi, P., & Haghighi, a. (2010). Sensitivity and resonant frequency of an AFM with sidewall and top-surface probes for both flexural and torsional modes. International Journal of Mechanical Sciences, 52(10), 1357-1365. https://doi.org/10.1016/j.ijmecsci.2010.06.013 DOI: https://doi.org/10.1016/j.ijmecsci.2010.06.013
Kahrobaiyan, M. H., Rahaeifard, M., & Ahmadian, M. T. (2011). Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope. Applied Mathematical Modelling, 35(12), 5903-5919. https://doi.org/10.1016/j.apm.2011.05.039 DOI: https://doi.org/10.1016/j.apm.2011.05.039
Korayem, M. H., Kavousi, a., & Ebrahimi, N. (2011). Dynamic analysis of tapping-mode AFM considering capillary force interactions. Scientia Iranica, 18(1), 121-129. https://doi.org/10.1016/j.scient.2011.03.014 DOI: https://doi.org/10.1016/j.scient.2011.03.014
Korayem, M. H., Noroozi, M., & Daeinabi, K. (2012). Control of an atomic force microscopy probe during nano-manipulation via the sliding mode method. Scientia Iranica, 19(5), 1346-1353. https://doi.org/10.1016/j.scient.2012.06.026 DOI: https://doi.org/10.1016/j.scient.2012.06.026
Lin, S.-M. (2006). Analytical solutions of the first three frequency shifts of AFM. https://doi.org/10.1016/j.ultramic.2006.01.005 DOI: https://doi.org/10.1016/j.ultramic.2006.01.005
Lin, S.-M., Lee, S.-Y., & Chen, B.-S. (2006). Closed-form solutions for the frequency shift of V-shaped probes scanning an inclined surface. Applied Surface Science, 252(18), 6249-6259. https://doi.org/10.1016/j.apsusc.2005.08.027 DOI: https://doi.org/10.1016/j.apsusc.2005.08.027
Lin, S.-M., Liauh, C.-T., Wang, W.-R., & Ho, S.-H. (2007). Analytical solutions of the frequency shifts of several modes in AFM scanning an inclined surface, subjected to the Lennard-Jones force. International Journal of Solids and Structures, 44(3-4), 799 - 810. https://doi.org/10.1016/j.ijsolstr.2006.05.024 DOI: https://doi.org/10.1016/j.ijsolstr.2006.05.024
Lin, S.-M., & Lin, C.-C. (2009). Phase shifts and energy dissipations of several modes of AFM: Minimizing topography and dissipation measurement errors. Precision Engineering, 33(4), 371-377. https://doi.org/10.1016/j.precisioneng.2008.10.005 DOI: https://doi.org/10.1016/j.precisioneng.2008.10.005
Lin, S.-M., & Wang, W.-R. (2009). Frequency shifts and analysis of AFM accompanying with coupled flexural–torsional motions. International Journal of Solids and Structures, 46(24), 4231-4241. https://doi.org/10.1016/j.ijsolstr.2009.08.016 DOI: https://doi.org/10.1016/j.ijsolstr.2009.08.016
Liu, W., Yan, Y., Hu, Z., Zhao, X., Yan, J., & Dong, S. (2012). Study on the nano machining process with a vibrating AFM tip on the polymer surface. Applied Surface Science, 258(7), 2620-2626. https://doi.org/10.1016/j.apsusc.2011.10.107 DOI: https://doi.org/10.1016/j.apsusc.2011.10.107
Melcher, J., Carrasco, C., Xu, X., Carrascosa, J. L., Gómez-Herrero, J., José de Pablo, P., & Raman, A. (2009). Origins of phase contrast in the atomic force microscope in liquids. Proc Natl Acad Sci U S A, 106 (33) , 13655 - 13660 . https://doi.org/10.1073/pnas.0902240106 DOI: https://doi.org/10.1073/pnas.0902240106
Pai, N.-S., Wang, C.-C., & Lin, D. T. W. (2010). Bifurcation analysis of a microcantilever in AFM system. Journal of the Franklin Institute, 347(7), 1353-1367. https://doi.org/10.1016/j.jfranklin.2010.06.008 DOI: https://doi.org/10.1016/j.jfranklin.2010.06.008
Pishkenari, H. N., & Meghdari, A. (2011). Effects of higher oscillation modes on TM-AFM measurements. Ultramicroscopy, 111(2), 107 - 116 . https://doi.org/10.1016/j.ultramic.2010.10.015 DOI: https://doi.org/10.1016/j.ultramic.2010.10.015
Raman, A., Melcher, J., & Tung, R. (2008). Cantilever dynamics in atomic force microscopy Dynamic atomic force microscopy , in essence, consists of a vibrating. 3(1), 20-27. https://doi.org/10.1016/S1748-0132(08)70012-4 DOI: https://doi.org/10.1016/S1748-0132(08)70012-4
Raul D. Rodiguez, E. L., Jaques Jupille. (2012). Probing the probe AFM tip-pro•ling via nanotemplates to determine.pdf. https://doi.org/10.1016/j.ultramic.2012.06.013 DOI: https://doi.org/10.1016/j.ultramic.2012.06.013
Schwartz, G. a., Riedel, C., Arinero, R., Tordjeman, P., Alegría, a., & Colmenero, J. (2011). Broadband nanodielectric spectroscopy by means of amplitude modulation electrostatic force microscopy (AM-EFM). Ultramicroscopy, 111(8), 1366 - 1369 . https://doi.org/10.1016/j.ultramic.2011.05.001 DOI: https://doi.org/10.1016/j.ultramic.2011.05.001
Solares, S. D. (2007). Single biomolecule imaging with frequency and force modulation in tapping-mode atomic force microscopy. The journal of physical chemistry. B, 111(9), 2125-2129. https://doi.org/10.1021/jp070067 DOI: https://doi.org/10.1021/jp070067+
Tamayo, J., Humphris, a. D., Owen, R. J., & Miles, M. J. (2001). High-Q dynamic force microscopy in liquid and its application to living cells. Biophysical journal, 81(1), 526 - 537 . https://doi.org/10.1016/S0006-3495(01)75719-0 DOI: https://doi.org/10.1016/S0006-3495(01)75719-0
Wang, C.-C., & Yau, H.-T. (2011). Application of the differential transformation method to bifurcation and chaotic analysis of an AFM probe tip. Computers & Mathematics with Applications, 61(8), 1957-1962. https://doi.org/10.1016/j.camwa.2010.08.019 DOI: https://doi.org/10.1016/j.camwa.2010.08.019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 J. Matamoros, J. Vega-Baudrit

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.