Modeling the dynamics of an AFM Atomic Force Microscopy cantilever

Authors

  • J. Matamoros National Nanotechnology Laboratory LANOTEC
    • J. Vega-Baudrit POLIUNA Polymer Laboratory

      DOI:

      https://doi.org/10.54495/Rev.Cientifica.v23i1.114

      Keywords:

      Simulation, dynamics, cantilever, AFM

      Abstract

      Currently some research involves computing, as well as experiment. On the other hand, computer simulation can provide valuable approaches to scientific problems. The atomic force microscopy (AFM) is one of the scanning probe microscopy techniques, which locally scans interatomic forces between a sample and a probe. The oscillatory motion of the cantilever can be simulated mathematically using a forced damped harmonic oscillator model. The fact that it is possible to mathematically approach the behaviour of the cantilever-sample system, allows them to be programmed and computed to predict the physical behavior at a theoretical level.

      Downloads

      Download data is not yet available.

      References

      Barcons, V., Verdaguer, A., Font, J., Chiesa, M., & Santos, S. (2012). Nanoscale Capillary Interactions in Dynamic Atomic Force Microscopy. The Journal of Physical Chemistry C, 116(14), 7757-7766. https://doi.org/10.1021/jp2107395 DOI: https://doi.org/10.1021/jp2107395

      Binning, G. (1988). Atomic force microscope and method for imaging surfaces with atomic resolution.

      Eslami, S., & Jalili, N. (2012). A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip - sample interaction forces. Ultramicroscopy, 117, 31-45. https://doi.org/10.1016/j.ultramic.2012.03.016 DOI: https://doi.org/10.1016/j.ultramic.2012.03.016

      Eves, B. J., & Green, R. G. (2012). Limitations on accurate shape determination using amplitude modulation atomic force microscopy. Ultramicroscopy, 115, 14-20. https://doi.org/10.1016/j.ultramic.2012.01.016 DOI: https://doi.org/10.1016/j.ultramic.2012.01.016

      García, R., & Perez, R. (2002). Dynamic atomic force microscopy methods. Surface Science Reports, 47. https://doi.org/10.1016/S0167-5729(02)00077-8 DOI: https://doi.org/10.1016/S0167-5729(02)00077-8

      Gómez, C. J., & Garcia, R. (2010). Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM. Ultramicroscopy, 110 (6) , 626 - 633 . https://doi.org/10.1016/j.ultramic.2010.02.023 DOI: https://doi.org/10.1016/j.ultramic.2010.02.023

      Gotsmann, B., & Fuchs, H. (2002). Dynamic AFM using the FM technique with constant excitation amplitude. Applied Surface Science, 188(3-4), 355-362. https://doi.org/10.1016/S0169-4332(01)00950-3 DOI: https://doi.org/10.1016/S0169-4332(01)00950-3

      Hölscher, H., & Schwarz, U. D. (2007). Theory of amplitude modulation atomic force microscopy with and without Q-Control. International Journal of Non-Linear Mechanics, 42(4), 608-625. https://doi.org/10.1016/j.ijnonlinmec.2007.01.018 DOI: https://doi.org/10.1016/j.ijnonlinmec.2007.01.018

      Kahrobaiyan, M. H., Ahmadian, M. T., Haghighi, P., & Haghighi, a. (2010). Sensitivity and resonant frequency of an AFM with sidewall and top-surface probes for both flexural and torsional modes. International Journal of Mechanical Sciences, 52(10), 1357-1365. https://doi.org/10.1016/j.ijmecsci.2010.06.013 DOI: https://doi.org/10.1016/j.ijmecsci.2010.06.013

      Kahrobaiyan, M. H., Rahaeifard, M., & Ahmadian, M. T. (2011). Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope. Applied Mathematical Modelling, 35(12), 5903-5919. https://doi.org/10.1016/j.apm.2011.05.039 DOI: https://doi.org/10.1016/j.apm.2011.05.039

      Korayem, M. H., Kavousi, a., & Ebrahimi, N. (2011). Dynamic analysis of tapping-mode AFM considering capillary force interactions. Scientia Iranica, 18(1), 121-129. https://doi.org/10.1016/j.scient.2011.03.014 DOI: https://doi.org/10.1016/j.scient.2011.03.014

      Korayem, M. H., Noroozi, M., & Daeinabi, K. (2012). Control of an atomic force microscopy probe during nano-manipulation via the sliding mode method. Scientia Iranica, 19(5), 1346-1353. https://doi.org/10.1016/j.scient.2012.06.026 DOI: https://doi.org/10.1016/j.scient.2012.06.026

      Lin, S.-M. (2006). Analytical solutions of the first three frequency shifts of AFM. https://doi.org/10.1016/j.ultramic.2006.01.005 DOI: https://doi.org/10.1016/j.ultramic.2006.01.005

      Lin, S.-M., Lee, S.-Y., & Chen, B.-S. (2006). Closed-form solutions for the frequency shift of V-shaped probes scanning an inclined surface. Applied Surface Science, 252(18), 6249-6259. https://doi.org/10.1016/j.apsusc.2005.08.027 DOI: https://doi.org/10.1016/j.apsusc.2005.08.027

      Lin, S.-M., Liauh, C.-T., Wang, W.-R., & Ho, S.-H. (2007). Analytical solutions of the frequency shifts of several modes in AFM scanning an inclined surface, subjected to the Lennard-Jones force. International Journal of Solids and Structures, 44(3-4), 799 - 810. https://doi.org/10.1016/j.ijsolstr.2006.05.024 DOI: https://doi.org/10.1016/j.ijsolstr.2006.05.024

      Lin, S.-M., & Lin, C.-C. (2009). Phase shifts and energy dissipations of several modes of AFM: Minimizing topography and dissipation measurement errors. Precision Engineering, 33(4), 371-377. https://doi.org/10.1016/j.precisioneng.2008.10.005 DOI: https://doi.org/10.1016/j.precisioneng.2008.10.005

      Lin, S.-M., & Wang, W.-R. (2009). Frequency shifts and analysis of AFM accompanying with coupled flexural–torsional motions. International Journal of Solids and Structures, 46(24), 4231-4241. https://doi.org/10.1016/j.ijsolstr.2009.08.016 DOI: https://doi.org/10.1016/j.ijsolstr.2009.08.016

      Liu, W., Yan, Y., Hu, Z., Zhao, X., Yan, J., & Dong, S. (2012). Study on the nano machining process with a vibrating AFM tip on the polymer surface. Applied Surface Science, 258(7), 2620-2626. https://doi.org/10.1016/j.apsusc.2011.10.107 DOI: https://doi.org/10.1016/j.apsusc.2011.10.107

      Melcher, J., Carrasco, C., Xu, X., Carrascosa, J. L., Gómez-Herrero, J., José de Pablo, P., & Raman, A. (2009). Origins of phase contrast in the atomic force microscope in liquids. Proc Natl Acad Sci U S A, 106 (33) , 13655 - 13660 . https://doi.org/10.1073/pnas.0902240106 DOI: https://doi.org/10.1073/pnas.0902240106

      Pai, N.-S., Wang, C.-C., & Lin, D. T. W. (2010). Bifurcation analysis of a microcantilever in AFM system. Journal of the Franklin Institute, 347(7), 1353-1367. https://doi.org/10.1016/j.jfranklin.2010.06.008 DOI: https://doi.org/10.1016/j.jfranklin.2010.06.008

      Pishkenari, H. N., & Meghdari, A. (2011). Effects of higher oscillation modes on TM-AFM measurements. Ultramicroscopy, 111(2), 107 - 116 . https://doi.org/10.1016/j.ultramic.2010.10.015 DOI: https://doi.org/10.1016/j.ultramic.2010.10.015

      Raman, A., Melcher, J., & Tung, R. (2008). Cantilever dynamics in atomic force microscopy Dynamic atomic force microscopy , in essence, consists of a vibrating. 3(1), 20-27. https://doi.org/10.1016/S1748-0132(08)70012-4 DOI: https://doi.org/10.1016/S1748-0132(08)70012-4

      Raul D. Rodiguez, E. L., Jaques Jupille. (2012). Probing the probe AFM tip-pro•ling via nanotemplates to determine.pdf. https://doi.org/10.1016/j.ultramic.2012.06.013 DOI: https://doi.org/10.1016/j.ultramic.2012.06.013

      Schwartz, G. a., Riedel, C., Arinero, R., Tordjeman, P., Alegría, a., & Colmenero, J. (2011). Broadband nanodielectric spectroscopy by means of amplitude modulation electrostatic force microscopy (AM-EFM). Ultramicroscopy, 111(8), 1366 - 1369 . https://doi.org/10.1016/j.ultramic.2011.05.001 DOI: https://doi.org/10.1016/j.ultramic.2011.05.001

      Solares, S. D. (2007). Single biomolecule imaging with frequency and force modulation in tapping-mode atomic force microscopy. The journal of physical chemistry. B, 111(9), 2125-2129. https://doi.org/10.1021/jp070067 DOI: https://doi.org/10.1021/jp070067+

      Tamayo, J., Humphris, a. D., Owen, R. J., & Miles, M. J. (2001). High-Q dynamic force microscopy in liquid and its application to living cells. Biophysical journal, 81(1), 526 - 537 . https://doi.org/10.1016/S0006-3495(01)75719-0 DOI: https://doi.org/10.1016/S0006-3495(01)75719-0

      Wang, C.-C., & Yau, H.-T. (2011). Application of the differential transformation method to bifurcation and chaotic analysis of an AFM probe tip. Computers & Mathematics with Applications, 61(8), 1957-1962. https://doi.org/10.1016/j.camwa.2010.08.019 DOI: https://doi.org/10.1016/j.camwa.2010.08.019

      Downloads

      Published

      2013-12-31

      Issue

      Section

      Original Research Papers

      How to Cite

      Modeling the dynamics of an AFM Atomic Force Microscopy cantilever. (2013). Revista Científica, 23(1), 78-86. https://doi.org/10.54495/Rev.Cientifica.v23i1.114

      Similar Articles

      1-10 of 11

      You may also start an advanced similarity search for this article.