Guatemalan anamorphic fungi and their potential use in production of α-amylases using rice husk as a substrate
DOI:
https://doi.org/10.54495/Rev.Cientifica.v29i2.39Keywords:
fungal enzymes, asexual fungi, Aspergillus sp., Beltrania rhombicaAbstract
Agroindustrial wastes are generated in large quantities and in most cases deposited in landfills as waste. These lignocellulosic residues can be raw material or substrate for anamorphic fungi, which through fermentation processes can produce biofuels, enzymes, vitamins, antioxidants, animal feed, antibiotics and other chemical products. In this study, the α-amylase production capacity of 20 native strains of anamorphic fungi from the fungal strain collection of Departamento de Microbiología, Facultad de Ciencias Químicas y Farmacia, USAC was determined through solid state fermentation, using rice husk as a substrate. The extraction of the enzymes was carried out by microfiltration and the amylolytic activity was measured by spectrophotometry. Of the strains evaluated, it was found that the amylases of Aspergillus sp. SL15319 showed the highest mean activity (standard deviation), both free, 930.26 (1.56) UA/ dl, and immobilized, 900.34 (3.21) UA/dl, followed by those of Beltrania rhombica, 905.02 (10.72) and 879.07 (3.87) UA/ dl and Aspergillus sp. SL15119 907.46 (5.17) and 875.95 (9.39) UA/dl (p < .05). The importance of this study lies in making known the potential of native anamorphic fungi in Guatemala for the use of agro industrial waste as a raw material for the production of substances of use to humans, and in reducing the pollutant load that is discharged into the environment.
Downloads
References
Aliyah, A., Almsyah, G., Ramadhani, R., & Hermansyah, H. (2017). Production of α-Amylase and β-Glucosidase from Aspergillus niger by solid state fermentation method on biomass waste substrates from rice husk, bagasse and corn cob. Energy Procedia, 136, 418-423. https://doi.org/10.1016/j.egypro.2017.10.269 DOI: https://doi.org/10.1016/j.egypro.2017.10.269
Castilho, L. R., Polato, C. M. S., Baruque, E. A., Sant’Anna, G. L., & Freire, D. M. G. (2000). Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochemical Engineering Journal, 4(3), 239-247. https://doi.org/10.1016/S1369-703X(99)00052-2 DOI: https://doi.org/10.1016/S1369-703X(99)00052-2
de Castro, A. M., de Andréa, T. V., Castilho, L., & Freire, D. M. G. (2010). Use of mesophilic fungal amylases produced by solid-state fermentation in the cold hydrolysis of raw babassu cake starch. Applied biochemistry and biotechnology, 162(6), 1612-1625.https://doi.org/10.1007/s12010-010-8942-z DOI: https://doi.org/10.1007/s12010-010-8942-z
Castro, A. M., Carvalho, D. F., Freire, D. M. G., & Castilho, L. R. (2010). Economic analysis of the production of amylases and other hydrolases by Aspergillus awamori in solid-state fermentation of babassu cake. Enzyme Research, 576872, 1-9. https://doi.org/10.4061/2010/576872 DOI: https://doi.org/10.4061/2010/576872
Cowan, D. A., & Fernandez-Lafuente, R. (2011). Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme and Microbial Technology, 49(4), 326-346. https://doi.org/10.1016/j.enzmictec.2011.06.023 DOI: https://doi.org/10.1016/j.enzmictec.2011.06.023
Ertan, F., Yagar, H., & Balkan, B. (2007). Optimization of α-amylase immobilization in calcium alginate beads. Preparative Biochemistry and Biotechnology, 37(3), 195-204. https://doi.org/10.1080/10826060701386679 DOI: https://doi.org/10.1080/10826060701386679
He, L., Mao, Y., Zhang, L., Wang, H., Alias, S. A., Gao, B., & Wei, D. (2017). Functional expression of a novel α -amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. Biotechnology, 17(22), 1-13.https://doi.org/10.1186/s12896-017-0343-8 DOI: https://doi.org/10.1186/s12896-017-0343-8
Kumar, D., Muthukumar, M., & Garg, N. (2012). Kinetics of fungal extracellular D -amylase from Fusarium solani immobilized in calcium alginate beads. Journal of Environmental Biology, 33(6), 1021-1025.
Lagunes, M., López, A., Ramos, A., Trigos, A., Salinas, A., & Espinoza, C. (2015). Actividad antibacteriana de extractos metanol:cloroformo de hongos fitopatógenos. Revista Mexicana de Fitopatología, 33(1), 87-94.
Liese, A., & Hilterhaus, L. (2013) Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews, 42(15), 6236-6249. https://doi.org/10.1039/c3cs35511j DOI: https://doi.org/10.1039/c3cs35511j
Lonsane, B.K., & Ramesh, M.V. (1990). Production of Bacterial ermostable α-Amylase by Solid-State Fermentation: A Potential Tool for Achieving Economy in Enzyme Production and Starch Hydrolysis. Advances in Applied Microbiology, 35, 1-56. https://doi.org/10.1016/S0065-2164(08)70242-9 DOI: https://doi.org/10.1016/S0065-2164(08)70242-9
Melnichuk, N., Braia, M. J., Anselmi, P. A., Meini, M. R., & Romanini, D. (2020). Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillusoryzae by solid-state fermentation. Waste Management, 106, 155-161. https://doi.org/10.1016/j.wasman.2020.03.025 DOI: https://doi.org/10.1016/j.wasman.2020.03.025
Mirabella, N., Castellani, V., & Sala, S. (2014). Current options for the valorization of food manufacturing waste: a review. Journal of Cleaner Production, 65, 28-41. https://doi.org/10.1016/j.jclepro.2013.10.051 DOI: https://doi.org/10.1016/j.jclepro.2013.10.051
Nguyen, T., Kim, K., Han, S., Cho, H., Kim, J., Park, S., ... Sim, S. (2010). Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresource Technology, 101(19), 7432-7438. https://doi.org/10.1016/j.biortech.2010.04.053 DOI: https://doi.org/10.1016/j.biortech.2010.04.053
Pandey, A., Selvakumar, P., Soccol C. R., & Nigam P. (1999). Solid state fermentation for production of industrial enzymes. Current Science, 77, 149-162.
Pandey, A., Soccol, C., & Mitchell, D. (2000). New developments in solid state fermentation: I-bioprocesses and products. Process Biochemistry, 35(10), 1153-1169. https://doi.org/10.1016/S0032-9592(00)00152-7 DOI: https://doi.org/10.1016/S0032-9592(00)00152-7
Sadh, P., Duhan, S., & Duhan, J. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 5(1), 1-15. https://doi.org/10.1186/s40643-017-0187-z DOI: https://doi.org/10.1186/s40643-017-0187-z
Santos, D. T., Sarrouh, B. F., Rivaldi, J. D., Converti, A., & Silva, S. S. (2008). Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production. Journal of Food Engineering, 86(4), 542-548. https://doi.org/10.1016/j.jfoodeng.2007.11.004 DOI: https://doi.org/10.1016/j.jfoodeng.2007.11.004
Sethi, B. K., Jana, A., Nanda, P. K., & Dasmohapatra, P. K. (2016). Production of α -Amylase by Aspergillus terreus NCFT 4269.10 Using Pearl Millet and Its Structural Characterization. Frontiers in Plant Science, 7(639), 1-13. DOI: https://doi.org/10.3389/fpls.2016.00639
https://doi.org/10.3389/fpls.2016.00639 DOI: https://doi.org/10.3389/fpls.2016.00639
Singh, S., Singh, S., Bali, V., Sharma, L., & Mangla, J. (2014). Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry. BioMed Research International, 48, 1-9. https://doi.org/10.1155/2014/215748 DOI: https://doi.org/10.1155/2014/215748
Wadhwa, M., & Bakshi, M. (2013). Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value added products. Bangkok, Tailandia: RAP publication.
Yepes, S., Montoya, L., & Orozco, F. (2008). Valorización de residuos agroindustriales -frutas- en Medellín y el Sur del Valle del Aburrá, Colombia. Revista de la Facultad Nacional de Agronomía Medellín, 61(1), 4422-4431.
Yusuf, M. (2017). Agro-industrial wastes materials and their recycled value-added applications: Revision. En L. Martínez, O. Kharissova & B. Kharisov (Eds). Handbook of Ecomaterials (pp. 1-9). Cham: Springer. https://doi.org/10.1007/978-3-319-48281-1_48-1 DOI: https://doi.org/10.1007/978-3-319-48281-1_48-1
Zaferanloo, B., Bhattacharjee, S., Ghorbani, M., Mahon, P., & Palombo, E. (2014). Amylase production by Preussia minima, a fungus of endophytic origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC Microbiology, 14(55), 1-12. https://doi.org/10.1186/1471-2180-14-55 DOI: https://doi.org/10.1186/1471-2180-14-55
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Ricardo Figueroa Ceballos, María del Carmen Bran González, Osberth Morales Esquivel y Gustavo Adolfo Álvarez Valenzuela

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.