Determination of enantiometric purity by polarimetry

Authors

  • Sergio Enrique Mejía Faculty of Chemical Sciences and Pharmacy
    • Pedro Liska Kucera Faculty of Chemical Sciences and Pharmacy

      DOI:

      https://doi.org/10.54495/Rev.Cientifica.v3i1.466

      Keywords:

      determination, enantiometric purity, polarimetry

      Abstract

      To help overcome the difficulties faced by developing countries in chemical research involving advanced instrumental technology, and with the aim of developing a simple method for determining enantiomeric purity, a mathematical model was deduced based on geometric considerations related to the specific optical rotation angles exhibited by optically active compounds and their enantiomeric mixtures, which gave rise to a mathematical equation that makes the aforementioned analytical determination possible. The statistical analysis of the results demonstrated that both the proposed mathematical model and the polarimetric method are precise, accurate, statistically valid, and significant, and their application provides results identical and equivalent to those obtained by Nuclear Magnetic Resonance methodology. This leads to the establishment of a new, available, and less expensive methodology that contributes not only to developing the analytical infrastructure of chemistry but also to expanding the research horizons of other scientific disciplines.

      Downloads

      Download data is not yet available.

      References

      Kaufman G, Myers R. The Resolution of Racemic Acid. A Classic Stereochemical Experiment for Undergraduate Laboratory. J Chem Educ 1975; 52 (12): 779. https://doi.org/10.1021/ed052p777 DOI: https://doi.org/10.1021/ed052p777

      Klages F. Tratado de Química Orgánica. Beltran J, trad. España: Reverté, Vols. 3, Vol. 2, 1969. (p. 521,595).

      Lederer E, Lederer M. Cromatografía. Villallonga F, trad. Argentina. Eí Ateneo.. 1960. (p. 456,457).

      Haas H, De Vries T, Jaffé H. Methods for Resolution of Enantiomorphs. III. Chromatographic Adsorption. J Am Chem Soc 1943; 65: 1486-1488. https://doi.org/10.1021/ja01248a017 DOI: https://doi.org/10.1021/ja01248a017

      Cook A, Cox S. Farmer T. Antibiotics Produced by Fungí, and a New Phenomenon in Optical Resolution. Nature 1948; 162:61. https://doi.org/10.1038/162061a0 DOI: https://doi.org/10.1038/162061a0

      Curti R, Colombo U. Chromatography of Stereoisomers with "Tailor Made" Compounds. J AmChem Soc 1952; 74: 3961. https://doi.org/10.1021/ja01135a527 DOI: https://doi.org/10.1021/ja01135a527

      Bradley W, Brindlwy R. Selective Adsoprtion of Optical Antipodes by Proteins. Nature 1954; 3 73 (4398): 312-313. https://doi.org/10.1038/173312b0 DOI: https://doi.org/10.1038/173312b0

      Gil-Av E. Present Status of Enantiomeric Analysis by Gass Chromatographv. J Mol Evol 1975; 6(2): 131-144. https://doi.org/10.1007/BF01732293 DOI: https://doi.org/10.1007/BF01732293

      Lindner W. HPLC Separation of Enantiomers on Bonded *Chirra Phases. Naturwissenschaften 1980; 67(7): 354-356. https://doi.org/10.1007/BF01106592 DOI: https://doi.org/10.1007/BF01106592

      Doskočilová D, Schneider B. Nuclear Magnetic Resonance of the Meso and dl Isomers of Dimexhylgiutarate-2,4-Diphenylpentane. J Poíymer Sci, Pt B 1965; 3(3); 213-219. https://doi.org/10.1002/pol.1965.110030312 DOI: https://doi.org/10.1002/pol.1965.110030312

      Raban M, Misiow K. Tetermmation of Optical Purity by NMR Spectroscopy. L. Compounds Owe their Dissymmetry to Deuterium Substitution. Tetrahedron Lett 1966:33: 3961-3966. https://doi.org/10.1016/S0040-4039(00)70010-4 DOI: https://doi.org/10.1016/S0040-4039(00)70010-4

      Pirkle W, Beare S. NMR Spectroscopy in Opticaily Active Solvents. V. Determination of Absolute Configuraron of (+) - Hydroxy – Trifluoromethyl Phenylacetic Acid. Tetrahedron Lett 1968- 21:2579-2582. https://doi.org/10.1016/S0040-4039(00)89701-4 DOI: https://doi.org/10.1016/S0040-4039(00)89701-4

      Shugar A, Kuvichinskii N. Application of the Method of Addition in Polarimetry. Dokl Mosk Sel'skohz Akad im K A Timiryazeva 1960; 57:153-154. Chem Absts 1963; 58:14280b.

      Róssi R, Ingroso, G. Preparation of Unsaturated Secondary and Tertiary Aliphatic Amines and Determination of the Relation between Rotatory Power and Optical Purity. Gazz Chim Ital 1968;98(7): 866-883.

      Horeau A. Interactions between Enantiomers in Solution; Effect of the Rotatory Power. Optical Purity and Enantiomeric Purity. Tetrahedron Lett 1969;36:3121-3124. https://doi.org/10.1016/S0040-4039(01)88364-7 DOI: https://doi.org/10.1016/S0040-4039(01)88364-7

      Guette J, Boucherot D, Horeau A. Interactions of Diasteroisomers of Enantiomers in the Liquid Phase. III. Non Linear variations of Rotatory Power of Certain Complexes of Chiral Coordinates as a Function of Enantiomeric Composition of these Coordinates. C R Acad Sci, Ser C 1974; 278(20): 1243-1245.

      Bonner W. Enantiomeric Markers in the Quantitative Gas Chromatographic Analysis of Optical Isomers. Application to the Estimation of Amino Acids Degradation. J Chromatogr Sci 1973; 11(2): 101-104. https://doi.org/10.1093/chromsci/11.2.101 DOI: https://doi.org/10.1093/chromsci/11.2.101

      Guette J, Horeau A. Determination of the Optical Purity and the Valué of the Rotatory Power of Racemic Constituents by Gas Phase Chromatography. Tetrahedron Lett 1965; 34:3049-3056. https://doi.org/10.1016/S0040-4039(01)89257-1 DOI: https://doi.org/10.1016/S0040-4039(01)89257-1

      Pirkle W, Burlingame T. Nonequivalence of the NMR Spectra of Enantiomers in Optically Active Solvents 111. Tetrahedron Lett 1967;41:4039-4042. https://doi.org/10.1016/S0040-4039(01)89733-1 DOI: https://doi.org/10.1016/S0040-4039(01)89733-1

      Kainosho M, Ajisaka A, Pirkle W, Beare S. The Use of Chiral Solvents or Lanthanide Shift Reagents to Distinguish Meso from d- or l- Diastereomers. J Am Chem Soc 1972; 94(16): 5924-5926. https://doi.org/10.1021/ja00771a082 DOI: https://doi.org/10.1021/ja00771a082

      Peterson M, Wahl G. Lanthanide NMR Shift Reagents. A Powerful New Stereochemicai Tool. J Chem Educ 1972; 49(12): 790-793. https://doi.org/10.1021/ed049p790 DOI: https://doi.org/10.1021/ed049p790

      McCreary M, Lewis D, Wernick D, Whitesides G. Determination of Enantiomeric Purity Using Chiral Lanthanide Shift Reagents. J Am Chem Soc 1974; 96(4): 1038-1054. https://doi.org/10.1021/ja00811a016 DOI: https://doi.org/10.1021/ja00811a016

      Molina SE. Determinación de Pureza Enantiomérica por Polarimetría. Guatemala: Universidad de San Carlos, (Tesis de Graduación, Facultad de Ciencias Químicas y Farmacia (1984. III 4- I73p. (p. 77-84, 111-113).

      León A, Paredes J. Manual de Laboratorio de Fisicoquímica. Guatemala: Facultad de Ciencias Químicas y Farmacia, 1979. (p. 84).

      Spiegel M. Probabilidad y Estadística. Ozuna J, trad. México: McGraw-Hill, 1976. (P. 266).

      Steel R, Torrie J. Principies and Procedures of Statistics with Special Reference to the Biológica. Sciences. New York: McGraw-Hill Book Company, 1960. (p. 433).

      Pirkle W. The Nonequivalence of Physical Properties of Enantiomers in Optically Active Solvents Differences in Nuclear Magnetic Resonance Spectra. J Am Chem Soc 1966; 88(8): 1837. https://doi.org/10.1021/ja00960a060 DOI: https://doi.org/10.1021/ja00960a060

      Downloads

      Published

      1985-06-30

      Issue

      Section

      Original Research Papers

      How to Cite

      Determination of enantiometric purity by polarimetry. (1985). Revista Científica, 3(1), 23-27. https://doi.org/10.54495/Rev.Cientifica.v3i1.466

      Similar Articles

      1-10 of 57

      You may also start an advanced similarity search for this article.