Interface interactions between biological vesicles and inorganic surfaces of biomaterials using atomic force microscopy.

Authors

  • F. Solera National High Technology Center
    • J. Vega National High Technology Center
      • S. Madrigal Polymer Laboratory of the School of Chemistry
        • A. Loria Pharmaceutical Research Institute

          DOI:

          https://doi.org/10.54495/Rev.Cientifica.v22i1.125

          Keywords:

          Interface, biological vesicles, biomaterials, atomic force microscopy, liposome

          Abstract

          Interface incompatibilities in the interaction between biological microparticles that normally circulate in the blood and the surface of biomaterials implants are normally associated with subsequent rejection reactions by the immune system. This requires an explanatory model for the behavior observed at the interface of liposomes and platelets in contact with biomaterials and inorganic surfaces. Thus, allowing the analysis of the relationship between the ionic balance of surface forces of attraction between liposome-surface/degree of deformation and change in the surface properties of liposomal nanoparticles absorbed by the surface modification of liposomes with biopolymers such as chitosan. Progress has been made in understanding the dynamics of interfaces for consistency of different lipids vesicles as a model and found that the biopolymer
          coating of lipid vesicles with chitosan provides better physical stability and an increase in the interface between biomaterials and biomimetic inorganic nanoparticles.

          Downloads

          Download data is not yet available.

          References

          Abraham, S. A., Waterhouse, D. N., Mayer, L. D., Cullis, P. R., Madden, T. D.,& Bally, M. (2005) The liposomal formulation of doxorubicin. In Liposomes, Pt E. Vol. 391, 71-97. https://doi.org/10.1016/S0076-6879(05)91004-5

          Álvarez, M.A., Seyler, D., Madrigal-Carballo S., Vila , A. O., &. Molina, .F. (2007). Influence of the electrical interface properties on the rheological behaviour of sonicated soy lecithin dispersions. Journal of Colloid and Interface Science. (309), 279-282. https://doi.org/10.1016/j.jcis.2007.02.026

          Bangham, A. D. (1993). Chemistry and Physics of Lipids. LIPOSOMES – THE BABRAHAM CONNECTION 64, (1-3), 275-285. https://doi.org/10.1016/0009-3084(93)90071-A

          Benkoski, J. J., Jesorka, A., Kasemo, B., & Hook, F. (2005). Light-activated desorption of photoactive polyelectrolytes from supported lipid bilayers. Macromolecules. 38(9), 3852-3860. https://doi.org/10.1021/ma048046q

          Claessens, M., Leermakers, F. A. M., Hoekstra, F. A., & Stuart, M. A. C. (2007). Entropic stabilization and equilibrium size of lipid vesicles. Langmuir., 23(11), 6315-6320. https://doi.org/10.1021/la0637622

          Discher, D. E., Ortiz, V., Srinivas, G., Klein, M. L., Kim, Y., David, C. A., … &., Ahmed, F. (2007). Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors. Progress in Polymer Science. 32(8-9), 838-857. https://doi.org/10.1016/j.progpolymsci.2007.05.011

          Discher, D. E.,& Eisenberg, A. (2002) Polymer vesicles. Science. 297(5583), 967-973. https://doi.org/10.1126/science.1074972

          Graff, A., Winterhalter, M., & Meier, W. (2001) Nanoreactors from polymer-stabilized liposomes. Langmuir.17(3), 919-923. https://doi.org/10.1021/la001306m

          Graneli, A., Rydstrom, J., Kasemo, B., & Hook, F. (2004). Utilizing adsorbed proteoliposomes trapped in a non-ruptured state on SiO2 for amplified detection of membrane proteins. Biosensors & Bioelectronics. 20(3), 498-504. https://doi.org/10.1016/j.bios.2004.02.013

          Groves, J. T., & Dustin, M. L. (2003). Supported planar bilayers in studies on immune cell adhesion and communication. Journal of Immunological Methods. 278(1-2), 19-32. https://doi.org/10.1016/S0022-1759(03)00193-5

          Hovis, J. S.,& Boxer, S. G. (2001). Patterning and composition arrays of supported lipid bilayers by microcontact printing. Langmuir., 17(11), 3400-3405. https://doi.org/10.1021/la0017577

          Ishida, T., Takanashi, Y,;& Kiwada, H. (2006) Safe and efficient drug delivery system with liposomes for intrathecal application of an antivasospastic drug, fasudil. Biological & Pharmaceutical Bulletin. 29 (3), 397-402. https://doi.org/10.1248/bpb.29.397

          Kam, L., & Boxer, S. G. (2003). Spatially selective manipulation of supported lipid bilayers by laminar flow: Steps toward biomembrane microfluidics. Langmuir. 19(5), 1624-1631. https://doi.org/10.1021/la0263413

          Lasic, D. D. (1988). The mechanism of vesicle formation. Biochem. Journal. 256(1), 1-11. https://doi.org/10.1042/bj2560001

          Lasic, D. D., Martin, F. J., Gabizon, A., Huang, S. K.,& Papahadjopoulos, D. (1991). Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim.Biophys.Acta. 1070(1), 187-192. https://doi.org/10.1016/0005-2736(91)90162-2

          Leng, J., Egelhaaf, S. U., & Cates, M. E. (2003) Kinetics of the micelle-to-vesicle transition: aqueous lecithin-bile salt mixtures. Biophys Journal.85(3), 1624-46. https://doi.org/10.1016/S0006-3495(03)74593-7

          Madrigal-Carballo S., Seyler D., Manconi, M., Mura, S., Vila, A. O. & Molina, F. (2008). An approach to rheological and electrokinetic behaviour of lipidic vesicles covered with chitosan biopolymer. Colloids Surf. A: Physicochem. Eng. Aspects (accepted - article in press), https://doi.org/10.1016/j.colsurfa.2007.11.039

          Meier, W. (2000). Polymer nanocapsules. Chemical Society Reviews. 29(5), 295-303. https://doi.org/10.1039/a809106d

          Meier, W., Nardin, C., & Winterhalter, M. (2000). Reconstitution of channel proteins in (polymerized) ABA triblock copolymer membranes. Angewandte Chemie-International. 39(24), 4599. https://doi.org/10.1002/1521-3773(20001215)39:24<4599::AID-ANIE4599>3.0.CO;2-Y

          Mura, S., Manconi, M., Madrigal-Carballo, S., Sinico, C., Fadda, A. M., Vila, A. O. & Molina F.. (2008). Composite soy lecithin–decylpolyglucoside vesicles: A theoretical and experimental study. Colloids Surf. A: Physicochem. Eng. Aspects (accepted - article in press) , https://doi.org/10.1016/j.colsurfa.2007.09.036

          Nardin, C., Hirt, T., Leukel, J.,& Meier, W. (2000). Polymerized ABA triblock copolymer vesicles. Langmuir. 16(3), 1035-1041. https://doi.org/10.1021/la990951u

          Nardin, C., Thoeni, S., Widmer, J., Winterhalter, M., & Meier, W. (2000.) Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chemical Communications. (15), 1433-1434. https://doi.org/10.1039/b004280n

          Nohynek, G. J., Lademann, J., Ribaud, C., & Roberts, M. S. (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Critical Reviews in Toxicology. 37(3), 251-277. https://doi.org/10.1080/10408440601177780

          Olofsson, L., Rindzevicius, T., Pfeiffer, I., Kall, M., & Hook, F. (2003). Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection. Langmuir. 19(24), 10414-10419. https://doi.org/10.1021/la0352927

          Orth, R. N., Wu, M., Holowka, D. A., Craighead, H. G.,& Baird, B. A. (2003) Mast cell activation on patterned lipid bilayers of subcellular dimensions. Langmuir. 19(5), 1599-1605. https://doi.org/10.1021/la026314c

          Papahadjopoulos, D., Allen, T. M., Gabizon, A., Mayhew, E., Matthay, K., Huang, S. K….& Redemann, C. (1991). Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proceeding of the National Academy of Sciences. U.S.A. 88(24), 11460-11464. https://doi.org/10.1073/pnas.88.24.11460

          Simson, R., Sackmann, E., Baszkin, A., & Norde, W. (2000). Mimicking physics of cell adhesion. In Physical Chemistry of Biological Interfaces, Marcel Dekker: New York.

          Sofou, S. (2007). Surface-active liposomes for targeted cancer therapy. Nanomedicine., 2(5), 711-724. https://doi.org/10.2217/17435889.2.5.711

          Stadler, B., Falconnet, D., Pfeiffer, I., Hook, F., & Voros, J. (2004) Micropatterning of DNA-tagged vesicles. Langmuir. 20(26), 11348-11354. https://doi.org/10.1021/la0482305

          Taylor, T. M., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005). Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition. 45, (7-8), 587-605. https://doi.org/10.1080/10408390591001135

          Vermette, P., Meagher, L., Gagnon, E., Griesser, H. J., & Doillon, C. J. (2002). Immobilized liposome layers for drug delivery applications: inhibition of angiogenesis. Journal of Controlled Release. 80(1-3), 179-195. https://doi.org/10.1016/S0168-3659(02)00023-8

          Wu, M., Holowka, D., Craighead, H. G., & Baird, B. (2004). Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America. 101(38), 13798-13803. https://doi.org/10.1073/pnas.0403835101

          Yeagle, P. L. (1987). [The Membranes of Cells] Academic Press, Inc.: San Francisco, CA, USA.

          Downloads

          Published

          2012-12-31

          Issue

          Section

          Original Research Papers

          How to Cite

          Interface interactions between biological vesicles and inorganic surfaces of biomaterials using atomic force microscopy. (2012). Revista Científica, 22(1), 73-80. https://doi.org/10.54495/Rev.Cientifica.v22i1.125

          Similar Articles

          1-10 of 339

          You may also start an advanced similarity search for this article.