Producción de amilasas por cepas de hongos anamorfos aislados de la hojarasca de Quercus sp

Authors

  • Ricardo Figueroa Ceballos Faculty of Chemistry and Pharmaceutical Sciences, University of San Carlos of Guatemala
  • Osberth Morales Esquivel Faculty of Chemistry and Pharmaceutical Sciences, University of San Carlos of Guatemala
  • María del Carmen Bran González Faculty of Chemistry and Pharmaceutical Sciences, University of San Carlos of Guatemala

DOI:

https://doi.org/10.54495/Rev.Cientifica.v29i1.49

Keywords:

enzymes, degradation, amylolytic capacity

Abstract

Anamorphic fungi is a group of microorganisms of great importance since they produce a wide variety of substances as part of their secondary metabolism, as well
as enzymes useful in the degradation of different substrates. Some of these enzymes are amylases, which degrade starch to dextrin, maltose or free glucose. Therefore, having industrial application for the manufacture of detergents, food, and textiles. In this
study, we evaluated the potential of 40 strains of anamorphic from Quercus sp, leaf litter collected in the Municipal Regional Park Astillero Municipal de Tecpán, in Chimaltenango (N 14º 46' 48.81", O 91º 0' 27.42") and the Ecological Park Senderos de Alux, in San Lucas Sacatepéquez (N 14º 36' 43.41", O 90º 38' 15.92"). e production of amylases was evaluated through the index of enzymatic activity, which was evidenced by the detection of starch agar degradation halo on starch agar, as well as by the measurement of the amylolytic activity of the enzyme extracts. Of the strains evaluated, 37 (92.5 %) produced amylases. The amylolytic activities of the anamorphic fungi native strains correspond with those reported for species of industrial use. The strain that showed the highest amylolytic activity (625 [13.09] UA / dl) was Virgaria nigra SL12517, which is similar to that reported for other fungi used in industrial processes. This shows the amylolytic potential of anamorphic fungi of Querqus sp. leaf litter.

Downloads

Download data is not yet available.

References

Alva, S., Anupama, J., Savla, J., Chiu, Y., Vyshali, P., Shruti, M., & Ruchi, K. (2007). Production and characterization of fungual enzyme isolated from Aspergillus sp. JGI 12 in solid state culture. African journal of biotechnology, 6(5), 576-581.

Castro, A., Andréa, T., Carvalho, D., Teixeira, M., Reis-Castilho, L., & Freire, D. (2011). Valorization of residual agroindustrial cakes by fungal production of multienzyme complexes and their use in cold

hydrolysis of raw starch. Waste and biomass valorization, 2(3), 291-302. doi:10.1007/ s12649-011-9075-5

Gamboa, M., & García, S. (2008). Potencial biológico y creatividad química de hongos microscópicos del trópico americano. En G. Heredia. Tópicos sobre diversidad, ecología y biotecnología de los hongos microscópicos (pp. 253-272). Veracruz: Prograf.

Gudynaite–Savitch, L., & White, T.C. (2016). Fungal biotechnology for industrial enzyme productio: focus on (Hemi)cellulase production strategies, advances and challenges. En M. Schomoll & C. Dateenböck (Eds.). Gene expression systems in fungi: advancements and applications (pp. 395-439). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-27951-0_19 DOI: https://doi.org/10.1007/978-3-319-27951-0_19

Karnwal, A., & Nigam, V. (2013). Production of amylase enzyme by isolated microorganisms and its application. International journal of pharma and bio sciences, 3(4), 354-360.

Lagunes, M., López, A., Ramos, A., Trigos, A., Salinas, A., & Esponiza, C. (2015). Actividad antibacteriana de extractos metanol:cloroformo de hongos fitopatógenos. Revista mexicana de fitopatología, 33(1), 87-94).

Leitner, S., Wanek, W., Wild, B., Haemmerle, I., Kohl, L., Keiblinger, K., ... Richter, A. (2012). Influence of litter chemistry and stoichimetry on glucan depolymerization during decomposition of beech (Fagus sylvatica L.) litter. Soil biology & biochemistry, 50(2012), 174-187. https://doi.org/10.1016/j.soilbio.2012.03.012 DOI: https://doi.org/10.1016/j.soilbio.2012.03.012

Mathew, J., Vezhacharickal, P., Sajeshkumar, N., & Ashokan, A. (2016). Amylase production by Aspergillus niger through submerged fermentation using starchy food byproducts as substrate. Internation journal of herbal medicine, 4(6), 34-40.

Mazumdar, A., & Maumdar, H. (2018). Bio-processing of banana peel for alpha amylase production by Aspergillus oryzae employing solid state fermentation. The clarion, 7(1), 36-42. https://doi.org/10.5958/2277-937X.2018.00006.0 DOI: https://doi.org/10.5958/2277-937X.2018.00006.0

Mojsov, K. (2012). Microbial alpha-amylases and their industrial applications: a review. International journal of management, it and engineering, 2(10), 583-609.

Mojsov, K., Andronikov, D., Janevski, A., Jordeva, S., Kertakova, M., Golomeova, S., ... Ignjatov, I. (2018). Production and application of aamylase enzyme in textile industry. Tekstilna industrija, 1, 23-28.

Pandey, A., Soccol, C., & Mitchell, D. (2000). New developments in solid state fermentation: I bioprocesses and products. Process biochemistry, 35(10), 1153-1169. https://doi.org/10.1016/S0032-9592(00)00152-7 DOI: https://doi.org/10.1016/S0032-9592(00)00152-7

Puri, S., & Loveleen, A. (2013). Production and optimization of amylase and glucoamylase using Aspergillus oryzae under solid state fermentation. International journal of research in pure and applied microbiology, 3(3), 83-88.

Queen, J., Rajalakshmi, G., & Komathi, S. (2017). Screening of amylase producing microbes from rhizosphere soil and its potential application in baking bread. European journal of biotechnology and bioscience, 5(5), 63-72.

Ramachandran, S., Patel, A., Nampoothiri, K., Chandran, S., Szakacs, G., Soccol, C., & Pandey, A. (2004). Alpha amylase from a fungal culture grown on oil cakes and its properties. Brazilian archives of biology and technology, 47(2), 309-317. https://doi.org/10.1590/S1516-89132004000200019 DOI: https://doi.org/10.1590/S1516-89132004000200019

Rubbo, M. & Kiesecker, M. (2004). Leaf litter composition and community structure: translating regional species changes into local dynamics. Ecology, 85(9), 2519-2525. https://doi.org/10.1890/03-0653 DOI: https://doi.org/10.1890/03-0653

Saleem, A., & Ebrahim, M. (2013). Production of amylase by fungi isolated from legume seeds collected in Almadinah Almunawwarah, Saudi Arabia. Journal of taibah university for science, 8, 90-97. https://doi.org/10.1016/j.jtusci.2013.09.002 DOI: https://doi.org/10.1016/j.jtusci.2013.09.002

Sarmiento, V., Vargas, D., Pedroza, A., Matiz, A., & Poutou, R. (2003). Producción de alfa–amilasa con células libres e inmovilizadas de Thermus sp. Revista MVZ Córdoba, 8(2), 310-317. DOI: https://doi.org/10.21897/rmvz.509

Spier, M., Woiciechowski, A., Vandenberghe, L., & Soccol, C. (2006). Production and Characterization of Amylases by Aspergillus niger under solid state fermentation using agro industrial products. International journal of food engineering, 2(3), 1-19. https://doi.org/10.2202/1556-3758.1116 DOI: https://doi.org/10.2202/1556-3758.1116

Tester, R., Qi, X., & Karkalas, J. (2006). Hydrolysis of native starches with amylases. Animal feed science and technology, 130(1), 39-54. https://doi.org/10.1016/j.anifeedsci.2006.01.016 DOI: https://doi.org/10.1016/j.anifeedsci.2006.01.016

Vanegas–Zamora, R., Méndez, J., & Murillo, W. (2015). Potencial amilolítico de microorganismos asociados al arroz cultivados a partir de almidón extraído de subproductos del grano. Revista de la academia colombiana de ciencias exactas, físicas y naturales, 39(153), 514-519. https://doi.org/10.18257/raccefyn.271 DOI: https://doi.org/10.18257/raccefyn.271

Villalba, P., Bula, A., Juan, H., & Ávila, A. (2008). Yucca (Manihot esculenta Crantz) starch polysaccharide dextrination through biological procedures. Interciencia, 33(4), 314-316.

Zaferanloo, B., Bhattacharjee, S., Ghorbani, M., Mahon, P., & Palombo, E. (2014). Amylase production by Preussia minima, a fungus of endophytic origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC Microbiology, 14(55), 1-12. https://doi.org/10.1186/1471-2180-14-55 DOI: https://doi.org/10.1186/1471-2180-14-55

Published

2019-12-31

How to Cite

Figueroa Ceballos, R., Morales Esquivel, O., & Bran González, M. del C. (2019). Producción de amilasas por cepas de hongos anamorfos aislados de la hojarasca de Quercus sp. Revista Científica, 29(1), 56–66. https://doi.org/10.54495/Rev.Cientifica.v29i1.49

Issue

Section

Original Research Papers

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)