Producción de amilasas por cepas de hongos anamorfos aislados de la hojarasca de Quercus sp
DOI:
https://doi.org/10.54495/Rev.Cientifica.v29i1.49Keywords:
enzymes, degradation, amylolytic capacityAbstract
Anamorphic fungi is a group of microorganisms of great importance since they produce a wide variety of substances as part of their secondary metabolism, as well
as enzymes useful in the degradation of different substrates. Some of these enzymes are amylases, which degrade starch to dextrin, maltose or free glucose. Therefore, having industrial application for the manufacture of detergents, food, and textiles. In this
study, we evaluated the potential of 40 strains of anamorphic from Quercus sp, leaf litter collected in the Municipal Regional Park Astillero Municipal de Tecpán, in Chimaltenango (N 14º 46' 48.81", O 91º 0' 27.42") and the Ecological Park Senderos de Alux, in San Lucas Sacatepéquez (N 14º 36' 43.41", O 90º 38' 15.92"). e production of amylases was evaluated through the index of enzymatic activity, which was evidenced by the detection of starch agar degradation halo on starch agar, as well as by the measurement of the amylolytic activity of the enzyme extracts. Of the strains evaluated, 37 (92.5 %) produced amylases. The amylolytic activities of the anamorphic fungi native strains correspond with those reported for species of industrial use. The strain that showed the highest amylolytic activity (625 [13.09] UA / dl) was Virgaria nigra SL12517, which is similar to that reported for other fungi used in industrial processes. This shows the amylolytic potential of anamorphic fungi of Querqus sp. leaf litter.
Downloads
References
Alva, S., Anupama, J., Savla, J., Chiu, Y., Vyshali, P., Shruti, M., & Ruchi, K. (2007). Production and characterization of fungual enzyme isolated from Aspergillus sp. JGI 12 in solid state culture. African journal of biotechnology, 6(5), 576-581.
Castro, A., Andréa, T., Carvalho, D., Teixeira, M., Reis-Castilho, L., & Freire, D. (2011). Valorization of residual agroindustrial cakes by fungal production of multienzyme complexes and their use in cold
hydrolysis of raw starch. Waste and biomass valorization, 2(3), 291-302. doi:10.1007/ s12649-011-9075-5
Gamboa, M., & García, S. (2008). Potencial biológico y creatividad química de hongos microscópicos del trópico americano. En G. Heredia. Tópicos sobre diversidad, ecología y biotecnología de los hongos microscópicos (pp. 253-272). Veracruz: Prograf.
Gudynaite–Savitch, L., & White, T.C. (2016). Fungal biotechnology for industrial enzyme productio: focus on (Hemi)cellulase production strategies, advances and challenges. En M. Schomoll & C. Dateenböck (Eds.). Gene expression systems in fungi: advancements and applications (pp. 395-439). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-27951-0_19 DOI: https://doi.org/10.1007/978-3-319-27951-0_19
Karnwal, A., & Nigam, V. (2013). Production of amylase enzyme by isolated microorganisms and its application. International journal of pharma and bio sciences, 3(4), 354-360.
Lagunes, M., López, A., Ramos, A., Trigos, A., Salinas, A., & Esponiza, C. (2015). Actividad antibacteriana de extractos metanol:cloroformo de hongos fitopatógenos. Revista mexicana de fitopatología, 33(1), 87-94).
Leitner, S., Wanek, W., Wild, B., Haemmerle, I., Kohl, L., Keiblinger, K., ... Richter, A. (2012). Influence of litter chemistry and stoichimetry on glucan depolymerization during decomposition of beech (Fagus sylvatica L.) litter. Soil biology & biochemistry, 50(2012), 174-187. https://doi.org/10.1016/j.soilbio.2012.03.012 DOI: https://doi.org/10.1016/j.soilbio.2012.03.012
Mathew, J., Vezhacharickal, P., Sajeshkumar, N., & Ashokan, A. (2016). Amylase production by Aspergillus niger through submerged fermentation using starchy food byproducts as substrate. Internation journal of herbal medicine, 4(6), 34-40.
Mazumdar, A., & Maumdar, H. (2018). Bio-processing of banana peel for alpha amylase production by Aspergillus oryzae employing solid state fermentation. The clarion, 7(1), 36-42. https://doi.org/10.5958/2277-937X.2018.00006.0 DOI: https://doi.org/10.5958/2277-937X.2018.00006.0
Mojsov, K. (2012). Microbial alpha-amylases and their industrial applications: a review. International journal of management, it and engineering, 2(10), 583-609.
Mojsov, K., Andronikov, D., Janevski, A., Jordeva, S., Kertakova, M., Golomeova, S., ... Ignjatov, I. (2018). Production and application of aamylase enzyme in textile industry. Tekstilna industrija, 1, 23-28.
Pandey, A., Soccol, C., & Mitchell, D. (2000). New developments in solid state fermentation: I bioprocesses and products. Process biochemistry, 35(10), 1153-1169. https://doi.org/10.1016/S0032-9592(00)00152-7 DOI: https://doi.org/10.1016/S0032-9592(00)00152-7
Puri, S., & Loveleen, A. (2013). Production and optimization of amylase and glucoamylase using Aspergillus oryzae under solid state fermentation. International journal of research in pure and applied microbiology, 3(3), 83-88.
Queen, J., Rajalakshmi, G., & Komathi, S. (2017). Screening of amylase producing microbes from rhizosphere soil and its potential application in baking bread. European journal of biotechnology and bioscience, 5(5), 63-72.
Ramachandran, S., Patel, A., Nampoothiri, K., Chandran, S., Szakacs, G., Soccol, C., & Pandey, A. (2004). Alpha amylase from a fungal culture grown on oil cakes and its properties. Brazilian archives of biology and technology, 47(2), 309-317. https://doi.org/10.1590/S1516-89132004000200019 DOI: https://doi.org/10.1590/S1516-89132004000200019
Rubbo, M. & Kiesecker, M. (2004). Leaf litter composition and community structure: translating regional species changes into local dynamics. Ecology, 85(9), 2519-2525. https://doi.org/10.1890/03-0653 DOI: https://doi.org/10.1890/03-0653
Saleem, A., & Ebrahim, M. (2013). Production of amylase by fungi isolated from legume seeds collected in Almadinah Almunawwarah, Saudi Arabia. Journal of taibah university for science, 8, 90-97. https://doi.org/10.1016/j.jtusci.2013.09.002 DOI: https://doi.org/10.1016/j.jtusci.2013.09.002
Sarmiento, V., Vargas, D., Pedroza, A., Matiz, A., & Poutou, R. (2003). Producción de alfa–amilasa con células libres e inmovilizadas de Thermus sp. Revista MVZ Córdoba, 8(2), 310-317. DOI: https://doi.org/10.21897/rmvz.509
Spier, M., Woiciechowski, A., Vandenberghe, L., & Soccol, C. (2006). Production and Characterization of Amylases by Aspergillus niger under solid state fermentation using agro industrial products. International journal of food engineering, 2(3), 1-19. https://doi.org/10.2202/1556-3758.1116 DOI: https://doi.org/10.2202/1556-3758.1116
Tester, R., Qi, X., & Karkalas, J. (2006). Hydrolysis of native starches with amylases. Animal feed science and technology, 130(1), 39-54. https://doi.org/10.1016/j.anifeedsci.2006.01.016 DOI: https://doi.org/10.1016/j.anifeedsci.2006.01.016
Vanegas–Zamora, R., Méndez, J., & Murillo, W. (2015). Potencial amilolítico de microorganismos asociados al arroz cultivados a partir de almidón extraído de subproductos del grano. Revista de la academia colombiana de ciencias exactas, físicas y naturales, 39(153), 514-519. https://doi.org/10.18257/raccefyn.271 DOI: https://doi.org/10.18257/raccefyn.271
Villalba, P., Bula, A., Juan, H., & Ávila, A. (2008). Yucca (Manihot esculenta Crantz) starch polysaccharide dextrination through biological procedures. Interciencia, 33(4), 314-316.
Zaferanloo, B., Bhattacharjee, S., Ghorbani, M., Mahon, P., & Palombo, E. (2014). Amylase production by Preussia minima, a fungus of endophytic origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC Microbiology, 14(55), 1-12. https://doi.org/10.1186/1471-2180-14-55 DOI: https://doi.org/10.1186/1471-2180-14-55
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Ricardo Figueroa Ceballos, Osberth Morales Esquivel, María del Carmen Bran González

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.