Relationship between incubation temperature and carapace asymmetry of neonates of Lepidochelys olivacea incubated in the Area of Multiple Use Hawaii (AUMH), Santa Rosa, Guatemala.
DOI:
https://doi.org/10.54495/Rev.Cientifica.v30i1.18Keywords:
Sea Turtles, developmental instability, temperature, embryonic development, incubationAbstract
Sea turtle embryos are susceptible to environmental disturbances, which result in abnormalities in their phenotype. One of the main parameters for measuring these disturbances is the asymmetry in the carapaces, which can be obtained through the Developmental Instability Index (DIx). Temperature plays an important role, influencing not only the future survival of hatchlings in extreme temperatures (high or low), but also specific attributes, such as sex determination, or it can even be the cause of the increase in the number of dermal appendages (shields) on the dorsal part of the carapace. This aimed to evaluate the relationship between incubation temperature and carapace asymmetry of Lepidochelys olivacea hatchlings incubated in relocated conditions in the Hawaii Multiple Use Area turtle rookery in Santa Rosa, Guatemala. To achieve this, the nesting conditions selected by the nesting females were replicated in relocated nests, using thermosensitive devices to measure the temperature during the incubation period. rough the calculation of DIx in 210 hatchlings, and using Kendall and Jockheere-Terpstra correlation tests, it was obtained that hatchlings present greater asymmetry in values of extreme temperatures, for both, high (Kendall: p<.05, tau = .232 ; JT p<.05, JT=2891) and low (Kendall: p<.05, tau= -.211 ; JT p<.05, JT=5005); as well as in high ranges of variation (Kendall: p<.05, tau= .231 ; JT p<.05, JT=6619), during the embryonic
development period.
Downloads
References
Băncilă, R. I., Plăiaşu, R., Tudor, M., Samoilă, C., & Cogălniceanu, D. (2012). Fluctuating asymmetry in the Eurasian spur-thighed tortoise, Testudo graeca ibera Linneaus, 1758 (Testudines: Testudinidae). Chelonian Conservation and Biology, 11(2), 234-239.
https://doi.org/10.2744/CCB-0956.1 DOI: https://doi.org/10.2744/CCB-0956.1
Booth, D. T., Burgess, E., McCosker, J., & Lanyon, J. M. (2004). e influence of incubation temperature on posthatching fitness characteristics of turtles. In International Congress Series, 1275, 226-233.
https://doi.org/10.1016/j.ics.2004.08.057 DOI: https://doi.org/10.1016/j.ics.2004.08.057
Bowden, R. M., Carter, A. W., & Paitz, R. T. (2014). Constancy in an Inconstant World: Moving Beyond Constant Temperatures in the Study of Reptilian Incubation. Integrative and Comparative Biology, 54(5), 830-840.
https://doi.org/10.1093/icb/icu016 DOI: https://doi.org/10.1093/icb/icu016
Brenes Arias, O., Bonilla Bonilla, L., Bonilla Salazar, A., & Vega Delgado, A. (2015). Características de la Anidación de Lepidochelys olivacea (Testudinata: Cheloniidae) entre el 2010 y 2012 en Playa Tortuga Ojochal de Osa, Puntarenas, Costa Rica. Revista de Biología Tropical, 63(1), 339-349.
https://doi.org/10.15517/rbt.v63i1.23113 DOI: https://doi.org/10.15517/rbt.v63i1.23113
Broderick, A. C., Godley, B. J., & Hays, G. C. (2001). Metabolic heating and the prediction of sex ratios for green turtles (Chelonia mydas). Physiological and Biochemical Zoology, 74(2), 161-170.
https://doi.org/10.1086/319661 DOI: https://doi.org/10.1086/319661
Cherepanov, G. (2014). Patterns of Scute Development in Turtle Shell: Symmetry and Asymmetry. Paleontological Journal, 48(12), 1-9.
https://doi.org/10.1134/S0031030114120028 DOI: https://doi.org/10.1134/S0031030114120028
Cherepanov, G., & Malashichev, Y. (2018). Variability of carapace scutes in newborn olive (Lepidochelys olivacea) and green (Chelonia mydas) turtles from Sri Lanka. [Sesión de simposio]. Turtle evolution symposium (pp. 19-20). Tübingen: Scidinge Hall Verlag Tübingen.
Cherepanov, G., Malashichev, Y., & Danilov, I. (2019). Supernumerary scutes verify a segment dependent model of the horny shell development in turtles. Journal of Anatomy, 235(4), 836-846.
https://doi.org/10.1111/joa.13022 DOI: https://doi.org/10.1111/joa.13022
Cortés-Gómez, A. A., Romero, D., & Girondot, M. (2018). Carapace asymmetry: A possible biomarker for metalaccumulation in adult olive Ridleys marine turtles?. Marine Pollution Bulletin, 291(1), 92-101.
https://doi.org/10.1016/j.marpolbul.2018.02.020 DOI: https://doi.org/10.1016/j.marpolbul.2018.02.020
Davis, A., & Grosse, AS. (2016). Measuring Fluctuating Asymmetry in Plastron Scutes of Yellow-bellied Sliders: the Importance of Gender, Size and Body Location. The American Midland Naturalist, 159(2), 340-348. DOI: https://doi.org/10.1674/0003-0031(2008)159[340:MFAIPS]2.0.CO;2
https://doi.org/10.1674/0003-0031(2008)159[340:MFAIPS]2.0.CO;2
Depledge, M. H., & Galloway, T. S. (2005). Healthy animals, healthy ecosystems. Frontiers in Ecology and the Environment, 3(5), 251-258. DOI: https://doi.org/10.1890/1540-9295(2005)003[0251:HAHE]2.0.CO;2
https://doi.org/10.1890/1540-9295(2005)003[0251:HAHE]2.0.CO;2
Du, W.G., & Shine, R. (2014). e behavioural and physiological strategies of bird and reptile embryos in response to unpredictable variation in nest temperature. Biological Reviews, 90(1), 19-30.
https://doi.org/10.1111/brv.12089 DOI: https://doi.org/10.1111/brv.12089
Fleming, K. (2019). Effects of In Situ Incubation Temperatures on Hatchling Loggerhead Sea Turtle (Caretta caretta) Morphology, Health Indices, and Locomotor Performance (Tesis de maestría). Universidad del Sur de Florida, St. Petersburg
Georges, A., Beggs, K., Young, J., & Doody, J. (2005). Modelling Development of Reptile Embryos under Fluctuating Temperature Regimes. Phisiological and Biochemical Zoology, 78(1),18-30.
https://doi.org/10.1086/425200 DOI: https://doi.org/10.1086/425200
Goessling, J. M., Rebois, K., Godwin, J. C., Birkhead, R., Murray, C. M., & Hermann, S. M. (2017). Differences in fluctuating asymmetry among four populations of Gopher tortoises (Gopherus polyphemus). Herpetological Conservation and Biology, 12(2), 548-555.
Janzen, F., Tucker, J., Paukstis, G. (2001). Experimental analysis of an early life - history stage: avian predation selects for larger body size of hatchling turtles. Journal of Evolutionary Biology, 13(6), 47-254.
https://doi.org/10.1046/j.1420-9101.2000.00234.x DOI: https://doi.org/10.1046/j.1420-9101.2000.00234.x
Lens, L., Van Dongen, S., Kark, S., & Matthysen, E. (2002). Fluctuating asymmetry as an indicator of fitness: can we bridge the gap between studies?. Biological reviews of the Cambridge Philosophical Society, 77(1), 27-38.
https://doi.org/10.1017/S1464793101005796 DOI: https://doi.org/10.1017/S1464793101005796
Li, H., Zhou, Z., Ding, G., & Ji, X. (2011). Fluctuations in incubation temperature affect incubation duration but not morphology, locomotion and growth of hatchlings in the sand lizard Lacerta agilis (Lacertidae). Acta Zoologica, 94(1), 11-18.
https://doi.org/10.1111/j.1463-6395.2011.00526.x DOI: https://doi.org/10.1111/j.1463-6395.2011.00526.x
Löwenborg, K., Shine, R., & Hagman, M. (2011). Fitness Disadvantages to Disrupted Embryogenesis Impose Selection Against Suboptimal Nest-Site Choice by Female Grass Snakes, Natrix natrix (Colubridae). Journal of Evolutionary Biology, 24(1), 177-83.
https://doi.org/10.1111/j.1420-9101.2010.02153.x DOI: https://doi.org/10.1111/j.1420-9101.2010.02153.x
Mast, R. B., & Carr, J. L. (1989). Carapacial scute variation in Kemp's ridley sea turtle (Lepidochelys kempi) hatchlings and juveniles. Proceedings of the First International Symposium on Kemp's Ridley Sea Turtle Biology, Conservation and Management. Simposium. Galvenston, Texas.
Miller, J. D. (1985). Embryology of marine turtles. Biology of the Reptilia, 14, 269-328.
Møller, A. P. (1997). Developmental stability and fitness: a review. e American Naturalist, 149(5), 916-932.
https://doi.org/10.1086/286030 DOI: https://doi.org/10.1086/286030
Moustakas - Verho, J. E., & Cherepanov, G. O. (2015). The integumental appendages of the turtle shell:An evo - devo perspective. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324(3), 221-229.
https://doi.org/10.1002/jez.b.22619 DOI: https://doi.org/10.1002/jez.b.22619
Moustakas-Verho, J. E., Zimm, R., Cebra-Thomas, J., Lempiäinen, N. K., Kallonen, A., Mitchell, K. L., ... & Gilbert, S. F. (2014). The origin and loss of periodic patterning in the turtle shell. Development, 141(15), 3033-3039.
https://doi.org/10.1242/dev.109041 DOI: https://doi.org/10.1242/dev.109041
Özdemİr, B., & Türkozan, O. (2006). Carapacial scute variation in green turtle, Chelonia mydas hatchlings in Northern Cyprus. Turkish Journal of Zoology, 30(2), 141-146
Pritchard, P. (1969). Studies of the systematics and reproductive cycle of the genus Lepidochelys. (Tesis de doctorado) Universidad de Florida, Gainesville.
Sim, E. (2014). Nest Environment and hatchling fitness correlates in the sea turtles Caretta caretta and Natator depressus. (Tesis de doctorado). Universidad de Queensland, Australia.
Sim, E., Booth, D., & Limpus, C. (2014). Non-modal Scute Patterns, Morphology, and Locomotor Performance of Loggerhead (Caretta caretta) and Flatback (Natator depressus) Turtle Hatchlings. Copeia, 2014(1), 63-69.
https://doi.org/10.1643/CP-13-041 DOI: https://doi.org/10.1643/CP-13-041
Telemeco, R., Warner, D., Reida, M., & Janzen, F. (2013). Extreme developmental temperatures result in morphological abnormalities in painted turtles (Chrysemys picta): a climate change perspective. Integrative Zoology, 8(2), 197-208.
https://doi.org/10.1111/1749-4877.12019 DOI: https://doi.org/10.1111/1749-4877.12019
Türkozan, O., Ilgaz, Ç., & Sak, S. (2001). Carapacial scute variation in loggerhead turtles, Caretta caretta. Zoology in the Middle East, 24(1), 137-142.
https://doi.org/10.1080/09397140.2001.10637893 DOI: https://doi.org/10.1080/09397140.2001.10637893
Varo-Cruz,N., Monzón-Argüello, C., Carrillo, M., Calabuig, P., & Liriz-Loza, A. (2015). Tortuga OlivaceaLepidochelys olivacea (Eschscholtz, 1829). En: Salvador, A., Marco, A. Enciclopedia Virtual de los Vertebrados Españoles (pp. 1-18). Madrid: Museo Nacional de Ciencias Naturales.
Williamson, S., Evans, R., & Reina, R. (2017). When is embryonic arrest broken in turtle eggs? Physiological and Biochemical Zoology, 90(5), 523-532.
https://doi.org/10.1086/692630 DOI: https://doi.org/10.1086/692630
Zimm, R., Bentley, B., Wyneken, J., & Moustakas-Verho, J. (2017). Environmental Causation of Turtle Scute Anomalies in ovo and in silico. Integrative and Comparative Biology, 57(6), 1303-1311.
https://doi.org/10.1093/icb/icx066 DOI: https://doi.org/10.1093/icb/icx066
Zimm, R. (2019). On the Development of the turtle scutte pattern and the origins of its Variation. (Tesis de doctorado). Faculty of Biological and Environmental Science of the University of Helsinki, Finlandia.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Científica

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.