Interface interactions between biological vesicles and inorganic surfaces of biomaterials using atomic force microscopy.
DOI:
https://doi.org/10.54495/Rev.Cientifica.v22i1.125Keywords:
Interface, biological vesicles, biomaterials, atomic force microscopy, liposomeAbstract
Interface incompatibilities in the interaction between biological microparticles that normally circulate in the
blood and the surface of biomaterials implants are normally associated with subsequent rejection reactions
by the immune system. This requires an explanatory model for the behavior observed at the interface of
liposomes and platelets in contact with biomaterials and inorganic surfaces. Thus, allowing the analysis of
the relationship between the ionic balance of surface forces of attraction between liposome-surface/degree
of deformation and change in the surface properties of liposomal nanoparticles absorbed by the surface
modification of liposomes with biopolymers such as chitosan. Progress has been made in understanding the
dynamics of interfaces for consistency of different lipids vesicles as a model and found that the biopolymer
coating of lipid vesicles with chitosan provides better physical stability and an increase in the interface between
biomaterials and biomimetic inorganic nanoparticles.
Downloads
References
Abraham, S. A., Waterhouse, D. N., Mayer, L. D., Cullis, P. R., Madden, T. D.,& Bally, M. (2005) The liposomal formulation of doxorubicin. In Liposomes, Pt E. Vol. 391, 71-97. https://doi.org/10.1016/S0076-6879(05)91004-5 DOI: https://doi.org/10.1016/S0076-6879(05)91004-5
Álvarez, M.A., Seyler, D., Madrigal-Carballo S., Vila , A. O., &. Molina, .F. (2007). Influence of the electrical interface properties on the rheological behaviour of sonicated soy lecithin dispersions. Journal of Colloid and Interface Science. (309), 279-282. https://doi.org/10.1016/j.jcis.2007.02.026 DOI: https://doi.org/10.1016/j.jcis.2007.02.026
Bangham, A. D. (1993). Chemistry and Physics of Lipids. LIPOSOMES – THE BABRAHAM CONNECTION 64, (1-3), 275-285. https://doi.org/10.1016/0009-3084(93)90071-A DOI: https://doi.org/10.1016/0009-3084(93)90071-A
Benkoski, J. J., Jesorka, A., Kasemo, B., & Hook, F. (2005). Light-activated desorption of photoactive polyelectrolytes from supported lipid bilayers. Macromolecules. 38(9), 3852-3860. https://doi.org/10.1021/ma048046q DOI: https://doi.org/10.1021/ma048046q
Claessens, M., Leermakers, F. A. M., Hoekstra, F. A., & Stuart, M. A. C. (2007). Entropic stabilization and equilibrium size of lipid vesicles. Langmuir., 23(11), 6315-6320. https://doi.org/10.1021/la0637622 DOI: https://doi.org/10.1021/la0637622
Discher, D. E., Ortiz, V., Srinivas, G., Klein, M. L., Kim, Y., David, C. A., … &., Ahmed, F. (2007). Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors. Progress in Polymer Science. 32(8-9), 838-857. https://doi.org/10.1016/j.progpolymsci.2007.05.011 DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.011
Discher, D. E.,& Eisenberg, A. (2002) Polymer vesicles. Science. 297(5583), 967-973. https://doi.org/10.1126/science.1074972 DOI: https://doi.org/10.1126/science.1074972
Graff, A., Winterhalter, M., & Meier, W. (2001) Nanoreactors from polymer-stabilized liposomes. Langmuir.17(3), 919-923. https://doi.org/10.1021/la001306m DOI: https://doi.org/10.1021/la001306m
Graneli, A., Rydstrom, J., Kasemo, B., & Hook, F. (2004). Utilizing adsorbed proteoliposomes trapped in a non-ruptured state on SiO2 for amplified detection of membrane proteins. Biosensors & Bioelectronics. 20(3), 498-504. https://doi.org/10.1016/j.bios.2004.02.013 DOI: https://doi.org/10.1016/j.bios.2004.02.013
Groves, J. T., & Dustin, M. L. (2003). Supported planar bilayers in studies on immune cell adhesion and communication. Journal of Immunological Methods. 278(1-2), 19-32. https://doi.org/10.1016/S0022-1759(03)00193-5 DOI: https://doi.org/10.1016/S0022-1759(03)00193-5
Hovis, J. S.,& Boxer, S. G. (2001). Patterning and composition arrays of supported lipid bilayers by microcontact printing. Langmuir., 17(11), 3400-3405. https://doi.org/10.1021/la0017577 DOI: https://doi.org/10.1021/la0017577
Ishida, T., Takanashi, Y,;& Kiwada, H. (2006) Safe and efficient drug delivery system with liposomes for intrathecal application of an antivasospastic drug, fasudil. Biological & Pharmaceutical Bulletin. 29 (3), 397-402. https://doi.org/10.1248/bpb.29.397 DOI: https://doi.org/10.1248/bpb.29.397
Kam, L., & Boxer, S. G. (2003). Spatially selective manipulation of supported lipid bilayers by laminar flow: Steps toward biomembrane microfluidics. Langmuir. 19(5), 1624-1631. https://doi.org/10.1021/la0263413 DOI: https://doi.org/10.1021/la0263413
Lasic, D. D. (1988). The mechanism of vesicle formation. Biochem. Journal. 256(1), 1-11. https://doi.org/10.1042/bj2560001 DOI: https://doi.org/10.1042/bj2560001
Lasic, D. D., Martin, F. J., Gabizon, A., Huang, S. K.,& Papahadjopoulos, D. (1991). Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim.Biophys.Acta. 1070(1), 187-192. https://doi.org/10.1016/0005-2736(91)90162-2 DOI: https://doi.org/10.1016/0005-2736(91)90162-2
Leng, J., Egelhaaf, S. U., & Cates, M. E. (2003) Kinetics of the micelle-to-vesicle transition: aqueous lecithin-bile salt mixtures. Biophys Journal.85(3), 1624-46. https://doi.org/10.1016/S0006-3495(03)74593-7 DOI: https://doi.org/10.1016/S0006-3495(03)74593-7
Madrigal-Carballo S., Seyler D., Manconi, M., Mura, S., Vila, A. O. & Molina, F. (2008). An approach to rheological and electrokinetic behaviour of lipidic vesicles covered with chitosan biopolymer. Colloids Surf. A: Physicochem. Eng. Aspects (accepted - article in press), https://doi.org/10.1016/j.colsurfa.2007.11.039 DOI: https://doi.org/10.1016/j.colsurfa.2007.11.039
Meier, W. (2000). Polymer nanocapsules. Chemical Society Reviews. 29(5), 295-303. https://doi.org/10.1039/a809106d DOI: https://doi.org/10.1039/a809106d
Meier, W., Nardin, C., & Winterhalter, M. (2000). Reconstitution of channel proteins in (polymerized) ABA triblock copolymer membranes. Angewandte Chemie-International. 39(24), 4599. https://doi.org/10.1002/1521-3773(20001215)39:24<4599::AID-ANIE4599>3.0.CO;2-Y DOI: https://doi.org/10.1002/1521-3773(20001215)39:24<4599::AID-ANIE4599>3.0.CO;2-Y
Mura, S., Manconi, M., Madrigal-Carballo, S., Sinico, C., Fadda, A. M., Vila, A. O. & Molina F.. (2008). Composite soy lecithin–decylpolyglucoside vesicles: A theoretical and experimental study. Colloids Surf. A: Physicochem. Eng. Aspects ( a c c e p t e d - a r t i c l e i n p r e s s ) , https://doi.org/10.1016/j.colsurfa.2007.09.036 DOI: https://doi.org/10.1016/j.colsurfa.2007.09.036
Nardin, C., Hirt, T., Leukel, J.,& Meier, W. (2000). Polymerized ABA triblock copolymer vesicles. Langmuir. 16(3), 1035-1041. https://doi.org/10.1021/la990951u DOI: https://doi.org/10.1021/la990951u
Nardin, C., Thoeni, S., Widmer, J., Winterhalter, M., & Meier, W. (2000.) Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chemical Communications. (15), 1433-1434. https://doi.org/10.1039/b004280n DOI: https://doi.org/10.1039/b004280n
Nohynek, G. J., Lademann, J., Ribaud, C., & Roberts, M. S. (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Critical Reviews in Toxicology. 37(3), 251-277. https://doi.org/10.1080/10408440601177780 DOI: https://doi.org/10.1080/10408440601177780
Olofsson, L., Rindzevicius, T., Pfeiffer, I., Kall, M., & Hook, F. (2003). Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection. Langmuir. 19(24), 10414-10419. https://doi.org/10.1021/la0352927 DOI: https://doi.org/10.1021/la0352927
Orth, R. N., Wu, M., Holowka, D. A., Craighead, H. G.,& Baird, B. A. (2003) Mast cell activation on patterned lipid bilayers of subcellular dimensions. Langmuir. 19(5), 1599-1605. https://doi.org/10.1021/la026314c DOI: https://doi.org/10.1021/la026314c
Papahadjopoulos, D., Allen, T. M., Gabizon, A., Mayhew, E., Matthay, K., Huang, S. K….& Redemann, C. (1991). Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proceeding of the National Academy of Sciences. U.S.A. 88(24), 11460-11464. https://doi.org/10.1073/pnas.88.24.11460 DOI: https://doi.org/10.1073/pnas.88.24.11460
Simson, R., Sackmann, E., Baszkin, A., & Norde, W. (2000). Mimicking physics of cell adhesion. In Physical Chemistry of Biological Interfaces, Marcel Dekker: New York.
Sofou, S. (2007). Surface-active liposomes for targeted cancer therapy. Nanomedicine., 2(5), 711-724. https://doi.org/10.2217/17435889.2.5.711 DOI: https://doi.org/10.2217/17435889.2.5.711
Stadler, B., Falconnet, D., Pfeiffer, I., Hook, F., & Voros, J. (2004) Micropatterning of DNA-tagged vesicles. Langmuir. 20(26), 11348-11354. https://doi.org/10.1021/la0482305 DOI: https://doi.org/10.1021/la0482305
Taylor, T. M., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005). Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition. 45, (7-8), 587-605. https://doi.org/10.1080/10408390591001135 DOI: https://doi.org/10.1080/10408390591001135
Vermette, P., Meagher, L., Gagnon, E., Griesser, H. J., & Doillon, C. J. (2002). Immobilized liposome layers for drug delivery applications: inhibition of angiogenesis. Journal of Controlled Release. 80(1-3), 179-195. https://doi.org/10.1016/S0168-3659(02)00023-8 DOI: https://doi.org/10.1016/S0168-3659(02)00023-8
Wu, M., Holowka, D., Craighead, H. G., & Baird, B. (2004). Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America. 101(38), 13798-13803. https://doi.org/10.1073/pnas.0403835101 DOI: https://doi.org/10.1073/pnas.0403835101
Yeagle, P. L. (1987). [The Membranes of Cells] Academic Press, Inc.: San Francisco, CA, USA.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2012 F. Solera, J. Vega, S. Madrigal, A. Loria

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.